首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

2.
Molecularly targeted, genomic‐driven, and immunotherapy‐based clinical trials continue to be advanced for the treatment of relapse or refractory cancer patients, where the growth modulation index (GMI) is often considered a primary endpoint of treatment efficacy. However, there little literature is available that considers the trial design with GMI as the primary endpoint. In this article, we derived a sample size formula for the score test under a log‐linear model of the GMI. Study designs using the derived sample size formula are illustrated under a bivariate exponential model, the Weibull frailty model, and the generalized treatment effect size. The proposed designs provide sound statistical methods for a single‐arm phase II trial with GMI as the primary endpoint.  相似文献   

3.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

4.
Sample size calculation is a critical issue in clinical trials because a small sample size leads to a biased inference and a large sample size increases the cost. With the development of advanced medical technology, some patients can be cured of certain chronic diseases, and the proportional hazards mixture cure model has been developed to handle survival data with potential cure information. Given the needs of survival trials with potential cure proportions, a corresponding sample size formula based on the log-rank test statistic for binary covariates has been proposed by Wang et al. [25]. However, a sample size formula based on continuous variables has not been developed. Herein, we presented sample size and power calculations for the mixture cure model with continuous variables based on the log-rank method and further modified it by Ewell's method. The proposed approaches were evaluated using simulation studies for synthetic data from exponential and Weibull distributions. A program for calculating necessary sample size for continuous covariates in a mixture cure model was implemented in R.  相似文献   

5.
Often, single‐arm trials are used in phase II to gather the first evidence of an oncological drug's efficacy, with drug activity determined through tumour response using the RECIST criterion. Provided the null hypothesis of ‘insufficient drug activity’ is rejected, the next step could be a randomised two‐arm trial. However, single‐arm trials may provide a biased treatment effect because of patient selection, and thus, this development plan may not be an efficient use of resources. Therefore, we compare the performance of development plans consisting of single‐arm trials followed by randomised two‐arm trials with stand‐alone single‐stage or group sequential randomised two‐arm trials. Through this, we are able to investigate the utility of single‐arm trials and determine the most efficient drug development plans, setting our work in the context of a published single‐arm non‐small‐cell lung cancer trial. Reference priors, reflecting the opinions of ‘sceptical’ and ‘enthusiastic’ investigators, are used to quantify and guide the suitability of single‐arm trials in this setting. We observe that the explored development plans incorporating single‐arm trials are often non‐optimal. Moreover, even the most pessimistic reference priors have a considerable probability in favour of alternative plans. Analysis suggests expected sample size savings of up to 25% could have been made, and the issues associated with single‐arm trials avoided, for the non‐small‐cell lung cancer treatment through direct progression to a group sequential randomised two‐arm trial. Careful consideration should thus be given to the use of single‐arm trials in oncological drug development when a randomised trial will follow. Copyright © 2015 The Authors. Pharmaceutical Statistics published by JohnWiley & Sons Ltd.  相似文献   

6.
For oncology drug development, phase II proof‐of‐concept studies have played a key role in determining whether or not to advance to a confirmatory phase III trial. With the increasing number of immunotherapies, efficient design strategies are crucial in moving successful drugs quickly to market. Our research examines drug development decision making under the framework of maximizing resource investment, characterized by benefit cost ratios (BCRs). In general, benefit represents the likelihood that a drug is successful, and cost is characterized by the risk adjusted total sample size of the phases II and III studies. Phase III studies often include a futility interim analysis; this sequential component can also be incorporated into BCRs. Under this framework, multiple scenarios can be considered. For example, for a given drug and cancer indication, BCRs can yield insights into whether to use a randomized control trial or a single‐arm study. Importantly, any uncertainty in historical control estimates that are used to benchmark single‐arm studies can be explicitly incorporated into BCRs. More complex scenarios, such as restricted resources or multiple potential cancer indications, can also be examined. Overall, BCR analyses indicate that single‐arm trials are favored for proof‐of‐concept trials when there is low uncertainty in historical control data and smaller phase III sample sizes. Otherwise, especially if the most likely to succeed tumor indication can be identified, randomized controlled trials may be a better option. While the findings are consistent with intuition, we provide a more objective approach.  相似文献   

7.
For two‐arm randomized phase II clinical trials, previous literature proposed an optimal design that minimizes the total sample sizes subject to multiple constraints on the standard errors of the estimated event rates and their difference. The original design is limited to trials with dichotomous endpoints. This paper extends the original approach to be applicable to phase II clinical trials with endpoints from the exponential dispersion family distributions. The proposed optimal design minimizes the total sample sizes needed to provide estimates of population means of both arms and their difference with pre‐specified precision. Its applications on data from specific distribution families are discussed under multiple design considerations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In some exceptional circumstances, as in very rare diseases, nonrandomized one‐arm trials are the sole source of evidence to demonstrate efficacy and safety of a new treatment. The design of such studies needs a sound methodological approach in order to provide reliable information, and the determination of the appropriate sample size still represents a critical step of this planning process. As, to our knowledge, no method exists for sample size calculation in one‐arm trials with a recurrent event endpoint, we propose here a closed sample size formula. It is derived assuming a mixed Poisson process, and it is based on the asymptotic distribution of the one‐sample robust nonparametric test recently developed for the analysis of recurrent events data. The validity of this formula in managing a situation with heterogeneity of event rates, both in time and between patients, and time‐varying treatment effect was demonstrated with exhaustive simulation studies. Moreover, although the method requires the specification of a process for events generation, it seems to be robust under erroneous definition of this process, provided that the number of events at the end of the study is similar to the one assumed in the planning phase. The motivating clinical context is represented by a nonrandomized one‐arm study on gene therapy in a very rare immunodeficiency in children (ADA‐SCID), where a major endpoint is the recurrence of severe infections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A cancer clinical trial with an immunotherapy often has 2 special features, which are patients being potentially cured from the cancer and the immunotherapy starting to take clinical effect after a certain delay time. Existing testing methods may be inadequate for immunotherapy clinical trials, because they do not appropriately take the 2 features into consideration at the same time, hence have low power to detect the true treatment effect. In this paper, we proposed a piece‐wise proportional hazards cure rate model with a random delay time to fit data, and a new weighted log‐rank test to detect the treatment effect of an immunotherapy over a chemotherapy control. We showed that the proposed weight was nearly optimal under mild conditions. Our simulation study showed a substantial gain of power in the proposed test over the existing tests and robustness of the test with misspecified weight. We also introduced a sample size calculation formula to design the immunotherapy clinical trials using the proposed weighted log‐rank test.  相似文献   

10.
A challenge arising in cancer immunotherapy trial design is the presence of a delayed treatment effect wherein the proportional hazard assumption no longer holds true. As a result, a traditional survival trial design based on the standard log‐rank test, which ignores the delayed treatment effect, will lead to substantial loss of statistical power. Recently, a piecewise weighted log‐rank test is proposed to incorporate the delayed treatment effect into consideration of the trial design. However, because the sample size formula was derived under a sequence of local alternative hypotheses, it results in an underestimated sample size when the hazard ratio is relatively small for a balanced trial design and an inaccurate sample size estimation for an unbalanced design. In this article, we derived a new sample size formula under a fixed alternative hypothesis for the delayed treatment effect model. Simulation results show that the new formula provides accurate sample size estimation for both balanced and unbalanced designs.  相似文献   

11.
In this paper, an exact variance of the one‐sample log‐rank test statistic is derived under the alternative hypothesis, and a sample size formula is proposed based on the derived exact variance. Simulation results showed that the proposed sample size formula provides adequate power to design a study to compare the survival of a single sample with that of a standard population. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Phase II clinical trials designed for evaluating a drug's treatment effect can be either single‐arm or double‐arm. A single‐arm design tests the null hypothesis that the response rate of a new drug is lower than a fixed threshold, whereas a double‐arm scheme takes a more objective comparison of the response rate between the new treatment and the standard of care through randomization. Although the randomized design is the gold standard for efficacy assessment, various situations may arise where a single‐arm pilot study prior to a randomized trial is necessary. To combine the single‐ and double‐arm phases and pool the information together for better decision making, we propose a Single‐To‐double ARm Transition design (START) with switching hypotheses tests, where the first stage compares the new drug's response rate with a minimum required level and imposes a continuation criterion, and the second stage utilizes randomization to determine the treatment's superiority. We develop a software package in R to calibrate the frequentist error rates and perform simulation studies to assess the trial characteristics. Finally, a metastatic pancreatic cancer trial is used for illustrating the decision rules under the proposed START design.  相似文献   

13.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

15.
Cancer immunotherapy often reflects the improvement in both short-term risk reduction and long-term survival. In this scenario, a mixture cure model can be used for the trial design. However, the hazard functions based on the mixture cure model between two groups will ultimately crossover. Thus, the conventional assumption of proportional hazards may be violated and study design using standard log-rank test (LRT) could lose power if the main interest is to detect the improvement of long-term survival. In this paper, we propose a change sign weighted LRT for the trial design. We derived a sample size formula for the weighted LRT, which can be used for designing cancer immunotherapy trials to detect both short-term risk reduction and long-term survival. Simulation studies are conducted to compare the efficiency between the standard LRT and the change sign weighted LRT.  相似文献   

16.
Two-stage designs offer substantial advantages for early phase II studies. The interim analysis following the first stage allows the study to be stopped for futility, or more positively, it might lead to early progression to the trials needed for late phase II and phase III. If the study is to continue to its second stage, then there is an opportunity for a revision of the total sample size. Two-stage designs have been implemented widely in oncology studies in which there is a single treatment arm and patient responses are binary. In this paper the case of two-arm comparative studies in which responses are quantitative is considered. This setting is common in therapeutic areas other than oncology. It will be assumed that observations are normally distributed, but that there is some doubt concerning their standard deviation, motivating the need for sample size review. The work reported has been motivated by a study in diabetic neuropathic pain, and the development of the design for that trial is described in detail.  相似文献   

17.
Positive and negative predictive values describe the performance of a diagnostic test. There are several methods to test the equality of predictive values in paired designs. However, these methods were premised on large sample theory, and they may not be suitable for small‐size clinical trials because of inflation of the type 1 error rate. In this study, we propose an exact test to control the type 1 error rate strictly for conducting a small‐size clinical trial that investigates the equality of predictive values in paired designs. In addition, we execute simulation studies to evaluate the performance of the proposed exact test and existing methods in small‐size clinical trials. The proposed test can calculate the exact P value, and as a result of simulations, the empirical type 1 error rate for the proposed test did not exceed the significance level regardless of the setting, and the empirical power for the proposed test is not much different from the other methods based on large‐sample theory. Therefore, it is considered that the proposed exact test is useful when the type 1 error rate needs to be controlled strictly.  相似文献   

18.
Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2‐arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size.  相似文献   

19.
We propose a two‐stage design for a single arm clinical trial with an early stopping rule for futility. This design employs different endpoints to assess early stopping and efficacy. The early stopping rule is based on a criteria determined more quickly than that for efficacy. These separate criteria are also nested in the sense that efficacy is a special case of, but usually not identical to, the early stopping endpoint. The design readily allows for planning in terms of statistical significance, power, expected sample size, and expected duration. This method is illustrated with a phase II design comparing rates of disease progression in elderly patients treated for lung cancer to rates found using a historical control. In this example, the early stopping rule is based on the number of patients who exhibit progression‐free survival (PFS) at 2 months post treatment follow‐up. Efficacy is judged by the number of patients who have PFS at 6 months. We demonstrate our design has expected sample size and power comparable with the Simon two‐stage design but exhibits shorter expected duration under a range of useful parameter values.  相似文献   

20.
In recent years, high failure rates in phase III trials were observed. One of the main reasons is overoptimistic assumptions for the planning of phase III resulting from limited phase II information and/or unawareness of realistic success probabilities. We present an approach for planning a phase II trial in a time‐to‐event setting that considers the whole phase II/III clinical development programme. We derive stopping boundaries after phase II that minimise the number of events under side conditions for the conditional probabilities of correct go/no‐go decision after phase II as well as the conditional success probabilities for phase III. In addition, we give general recommendations for the choice of phase II sample size. Our simulations show that unconditional probabilities of go/no‐go decision as well as the unconditional success probabilities for phase III are influenced by the number of events observed in phase II. However, choosing more than 150 events in phase II seems not necessary as the impact on these probabilities then becomes quite small. We recommend considering aspects like the number of compounds in phase II and the resources available when determining the sample size. The lower the number of compounds and the lower the resources are for phase III, the higher the investment for phase II should be. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号