首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Statistics and Computing - The Hamiltonian Monte Carlo (HMC) method has been recognized as a powerful sampling tool in computational statistics. We show that performance of HMC can be significantly...  相似文献   

2.
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.  相似文献   

3.
We explore the construction of new symplectic numerical integration schemes to be used in Hamiltonian Monte Carlo and study their efficiency. Integration schemes from Blanes et al., and a new scheme are considered as candidates to the commonly used leapfrog method. All integration schemes are tested within the framework of the No-U-Turn sampler (NUTS), both for a logistic regression model and a student t-model. The results show that the leapfrog method is inferior to all the new methods both in terms of asymptotic expected acceptance probability for a model problem and the efficient sample size per computing time for the realistic models.  相似文献   

4.
In this article, we propose to evaluate and compare Markov chain Monte Carlo (MCMC) methods to estimate the parameters in a generalized extreme value model. We employed the Bayesian approach using traditional Metropolis-Hastings methods, Hamiltonian Monte Carlo (HMC), and Riemann manifold HMC (RMHMC) methods to obtain the approximations to the posterior marginal distributions of interest. Applications to real datasets and simulation studies provide evidence that the extra analytical work involved in Hamiltonian Monte Carlo algorithms is compensated by a more efficient exploration of the parameter space.  相似文献   

5.
Riemann manifold Hamiltonian Monte Carlo (RMHMC) has the potential to produce high-quality Markov chain Monte Carlo output even for very challenging target distributions. To this end, a symmetric positive definite scaling matrix for RMHMC is proposed. The scaling matrix is obtained by applying a modified Cholesky factorization to the potentially indefinite negative Hessian of the target log-density. The methodology is able to exploit the sparsity of the Hessian, stemming from conditional independence modeling assumptions, and thus admit fast implementation of RMHMC even for high-dimensional target distributions. Moreover, the methodology can exploit log-concave conditional target densities, often encountered in Bayesian hierarchical models, for faster sampling and more straightforward tuning. The proposed methodology is compared to alternatives for some challenging targets and is illustrated by applying a state-space model to real data.  相似文献   

6.
Abstract

Conventional methods for statistical hypothesis testing has historically been categorized as frequentist or Bayesian. But, a third option based on a reconciling hybrid frequentist-Bayesian framework is quickly emerging. Although prominent, there are applications where the exact hybrid test is not computable. For such cases, the present paper introduces a straightforward Monte Carlo procedure for performing frequentist-Bayesian testing.  相似文献   

7.
Ensemble forecasting involves the use of several integrations of a numerical model. Even if this model is assumed to be known, ensembles are needed due to uncertainty in initial conditions. The ideas discussed in this paper incorporate aspects of both analytic model approximations and Monte Carlo arguments to gain some efficiency in the generation and use of ensembles. Efficiency is gained through the use of importance sampling Monte Carlo. Once ensemble members are generated, suggestions for their use, involving both approximation and statistical notions such as kernel density estimation and mixture modeling are discussed. Fully deterministic procedures derived from the Monte Carlo analysis are also described. Examples using the three-dimensional Lorenz system are described.  相似文献   

8.
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form \(X = g(\mathbf {U})\) where g is a deterministic function and \(\mathbf {U}\) can be a random finite- or infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator—in particular it has a finite variance as soon as there exists \(k \in \mathbb {R}> 1\) such that \({\text {E}}\left[ X^k \right] < \infty \). Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its running time. Finally we extensively study the case where X is heavy-tailed.  相似文献   

9.
This paper examines methodology for performing Bayesian inference sequentially on a sequence of posteriors on spaces of different dimensions. For this, we use sequential Monte Carlo samplers, introducing the innovation of using deterministic transformations to move particles effectively between target distributions with different dimensions. This approach, combined with adaptive methods, yields an extremely flexible and general algorithm for Bayesian model comparison that is suitable for use in applications where the acceptance rate in reversible jump Markov chain Monte Carlo is low. We use this approach on model comparison for mixture models, and for inferring coalescent trees sequentially, as data arrives.  相似文献   

10.
11.
A Monte Carlo simulation program based on accompanying probability theory is developed and implemented to examine the trustworthiness of certain methods used in numerical integration. The power and reliability of an approximation process are defined. Using the simulation, estimated power and reliability values are obtained for the Trapezoidal rule, for Simpson’s rule, and for Romberg integration in conjunction with several frequently used stopping rules. The above-mentioned approximation processes are then analyzed and compared within the context of these two fundamental notions.  相似文献   

12.
It is widely believed that the number of resamples required for bootstrap variance estimation is relatively small An argument based on the unconditional coefficient of variation of the Monte Carlo approximation, suggests that as few as 25 resamples will give reasonable results. In this article we argue that the number of resamples should, in fact, be determined by the conditional coefficient of variation, involving only resampling variability. Our conditional analysis is founded on a belief that Monte Carlo error should not be allowed to determine the conclusions of a statistical analysis and indicates that approximately 800 resamples are required for this purpose. The argument can be generalized to the multivariate setting and a simple formula is given for determining a lower bound on the number of resamples required to approximate an m-dimensional bootstrap variance-covariance matrix.  相似文献   

13.
Ye  Lifeng  Beskos  Alexandros  De Iorio  Maria  Hao  Jie 《Statistics and Computing》2020,30(4):887-905
Statistics and Computing - In variational inference (VI), coordinate-ascent and gradient-based approaches are two major types of algorithms for approximating difficult-to-compute probability...  相似文献   

14.
There are two conceptually distinct tasks in Markov chain Monte Carlo (MCMC): a sampler is designed for simulating a Markov chain and then an estimator is constructed on the Markov chain for computing integrals and expectations. In this article, we aim to address the second task by extending the likelihood approach of Kong et al. for Monte Carlo integration. We consider a general Markov chain scheme and use partial likelihood for estimation. Basically, the Markov chain scheme is treated as a random design and a stratified estimator is defined for the baseline measure. Further, we propose useful techniques including subsampling, regulation, and amplification for achieving overall computational efficiency. Finally, we introduce approximate variance estimators for the point estimators. The method can yield substantially improved accuracy compared with Chib's estimator and the crude Monte Carlo estimator, as illustrated with three examples.  相似文献   

15.
This paper presents a new Metropolis-adjusted Langevin algorithm (MALA) that uses convex analysis to simulate efficiently from high-dimensional densities that are log-concave, a class of probability distributions that is widely used in modern high-dimensional statistics and data analysis. The method is based on a new first-order approximation for Langevin diffusions that exploits log-concavity to construct Markov chains with favourable convergence properties. This approximation is closely related to Moreau–Yoshida regularisations for convex functions and uses proximity mappings instead of gradient mappings to approximate the continuous-time process. The proposed method complements existing MALA methods in two ways. First, the method is shown to have very robust stability properties and to converge geometrically for many target densities for which other MALA are not geometric, or only if the step size is sufficiently small. Second, the method can be applied to high-dimensional target densities that are not continuously differentiable, a class of distributions that is increasingly used in image processing and machine learning and that is beyond the scope of existing MALA and HMC algorithms. To use this method it is necessary to compute or to approximate efficiently the proximity mappings of the logarithm of the target density. For several popular models, including many Bayesian models used in modern signal and image processing and machine learning, this can be achieved with convex optimisation algorithms and with approximations based on proximal splitting techniques, which can be implemented in parallel. The proposed method is demonstrated on two challenging high-dimensional and non-differentiable models related to image resolution enhancement and low-rank matrix estimation that are not well addressed by existing MCMC methodology.  相似文献   

16.
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices.  相似文献   

17.
We propose a density-tempered marginalized sequential Monte Carlo (SMC) sampler, a new class of samplers for full Bayesian inference of general state-space models. The dynamic states are approximately marginalized out using a particle filter, and the parameters are sampled via a sequential Monte Carlo sampler over a density-tempered bridge between the prior and the posterior. Our approach delivers exact draws from the joint posterior of the parameters and the latent states for any given number of state particles and is thus easily parallelizable in implementation. We also build into the proposed method a device that can automatically select a suitable number of state particles. Since the method incorporates sample information in a smooth fashion, it delivers good performance in the presence of outliers. We check the performance of the density-tempered SMC algorithm using simulated data based on a linear Gaussian state-space model with and without misspecification. We also apply it on real stock prices using a GARCH-type model with microstructure noise.  相似文献   

18.
Summary.  The expectation–maximization (EM) algorithm is a popular tool for maximizing likelihood functions in the presence of missing data. Unfortunately, EM often requires the evaluation of analytically intractable and high dimensional integrals. The Monte Carlo EM (MCEM) algorithm is the natural extension of EM that employs Monte Carlo methods to estimate the relevant integrals. Typically, a very large Monte Carlo sample size is required to estimate these integrals within an acceptable tolerance when the algorithm is near convergence. Even if this sample size were known at the onset of implementation of MCEM, its use throughout all iterations is wasteful, especially when accurate starting values are not available. We propose a data-driven strategy for controlling Monte Carlo resources in MCEM. The algorithm proposed improves on similar existing methods by recovering EM's ascent (i.e. likelihood increasing) property with high probability, being more robust to the effect of user-defined inputs and handling classical Monte Carlo and Markov chain Monte Carlo methods within a common framework. Because of the first of these properties we refer to the algorithm as 'ascent-based MCEM'. We apply ascent-based MCEM to a variety of examples, including one where it is used to accelerate the convergence of deterministic EM dramatically.  相似文献   

19.
There are many hypothesis testing settings in which one can calculate a “reasonable” test statistic, but in which the null distribution of the statistic is unknown or completely intractable. Fortunately, in many such situations, it is possible to simulate values of the test statistic under the null hypothesis, in which case one can conduct a Monte Carlo test. A difficulty however arises in that Monte Carlo tests, as they are currently structured, are applicable only if ties cannot occur among the values of the test statistics. There is a frequently occurring scenario in which there are lots of ties, namely that in which the null distribution of the test statistic has a (single) point mass. It turns out that one can modify the current form of Monte Carlo tests so as to accommodate such settings. Developing this modification leads to an intriguing identity involving the binomial probability function and its derivatives. In this article, we will briefly explain the modified procedure, discuss simulation studies which demonstrate its efficacy, and provide a proof of the identity referred to above.  相似文献   

20.
Statistics and Computing - The worst case integration error in reproducing kernel Hilbert spaces of standard Monte Carlo methods with n random points decays as $$n^{-1/2}$$. However, the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号