首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we discuss new adaptive proposal strategies for sequential Monte Carlo algorithms—also known as particle filters—relying on criteria evaluating the quality of the proposed particles. The choice of the proposal distribution is a major concern and can dramatically influence the quality of the estimates. Thus, we show how the long-used coefficient of variation (suggested by Kong et al. in J. Am. Stat. Assoc. 89(278–288):590–599, 1994) of the weights can be used for estimating the chi-square distance between the target and instrumental distributions of the auxiliary particle filter. As a by-product of this analysis we obtain an auxiliary adjustment multiplier weight type for which this chi-square distance is minimal. Moreover, we establish an empirical estimate of linear complexity of the Kullback-Leibler divergence between the involved distributions. Guided by these results, we discuss adaptive designing of the particle filter proposal distribution and illustrate the methods on a numerical example. This work was partly supported by the National Research Agency (ANR) under the program “ANR-05-BLAN-0299”.  相似文献   

2.
In this paper we describe a sequential importance sampling (SIS) procedure for counting the number of vertex covers in general graphs. The optimal SIS proposal distribution is the uniform over a suitably restricted set, but is not implementable. We will consider two proposal distributions as approximations to the optimal. Both proposals are based on randomization techniques. The first randomization is the classic probability model of random graphs, and in fact, the resulting SIS algorithm shows polynomial complexity for random graphs. The second randomization introduces a probabilistic relaxation technique that uses Dynamic Programming. The numerical experiments show that the resulting SIS algorithm enjoys excellent practical performance in comparison with existing methods. In particular the method is compared with cachet—an exact model counter, and the state of the art SampleSearch, which is based on Belief Networks and importance sampling.  相似文献   

3.
New sequential Monte Carlo methods for nonlinear dynamic systems   总被引:1,自引:0,他引:1  
In this paper we present several new sequential Monte Carlo (SMC) algorithms for online estimation (filtering) of nonlinear dynamic systems. SMC has been shown to be a powerful tool for dealing with complex dynamic systems. It sequentially generates Monte Carlo samples from a proposal distribution, adjusted by a set of importance weight with respect to a target distribution, to facilitate statistical inferences on the characteristic (state) of the system. The key to a successful implementation of SMC in complex problems is the design of an efficient proposal distribution from which the Monte Carlo samples are generated. We propose several such proposal distributions that are efficient yet easy to generate samples from. They are efficient because they tend to utilize both the information in the state process and the observations. They are all Gaussian distributions hence are easy to sample from. The central ideas of the conventional nonlinear filters, such as extended Kalman filter, unscented Kalman filter and the Gaussian quadrature filter, are used to construct these proposal distributions. The effectiveness of the proposed algorithms are demonstrated through two applications—real time target tracking and the multiuser parameter tracking in CDMA communication systems.This work was supported in part by the U.S. National Science Foundation (NSF) under grants CCR-9875314, CCR-9980599, DMS-9982846, DMS-0073651 and DMS-0073601.  相似文献   

4.
Rejection sampling is a well-known method to generate random samples from arbitrary target probability distributions. It demands the design of a suitable proposal probability density function (pdf) from which candidate samples can be drawn. These samples are either accepted or rejected depending on a test involving the ratio of the target and proposal densities. The adaptive rejection sampling method is an efficient algorithm to sample from a log-concave target density, that attains high acceptance rates by improving the proposal density whenever a sample is rejected. In this paper we introduce a generalized adaptive rejection sampling procedure that can be applied with a broad class of target probability distributions, possibly non-log-concave and exhibiting multiple modes. The proposed technique yields a sequence of proposal densities that converge toward the target pdf, thus achieving very high acceptance rates. We provide a simple numerical example to illustrate the basic use of the proposed technique, together with a more elaborate positioning application using real data.  相似文献   

5.
We present a new class of models to fit longitudinal data, obtained with a suitable modification of the classical linear mixed-effects model. For each sample unit, the joint distribution of the random effect and the random error is a finite mixture of scale mixtures of multivariate skew-normal distributions. This extension allows us to model the data in a more flexible way, taking into account skewness, multimodality and discrepant observations at the same time. The scale mixtures of skew-normal form an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal, skew-Student-t, skew-slash and the skew-contaminated normal distributions as special cases, being a flexible alternative to the use of the corresponding symmetric distributions in this type of models. A simple efficient MCMC Gibbs-type algorithm for posterior Bayesian inference is employed. In order to illustrate the usefulness of the proposed methodology, two artificial and two real data sets are analyzed.  相似文献   

6.
In this article, to reduce computational load in performing Bayesian variable selection, we used a variant of reversible jump Markov chain Monte Carlo methods, and the Holmes and Held (HH) algorithm, to sample model index variables in logistic mixed models involving a large number of explanatory variables. Furthermore, we proposed a simple proposal distribution for model index variables, and used a simulation study and real example to compare the performance of the HH algorithm with our proposed and existing proposal distributions. The results show that the HH algorithm with our proposed proposal distribution is a computationally efficient and reliable selection method.  相似文献   

7.
The authors provide an overview of optimal scaling results for the Metropolis algorithm with Gaussian proposal distribution. They address in more depth the case of high‐dimensional target distributions formed of independent, but not identically distributed components. They attempt to give an intuitive explanation as to why the well‐known optimal acceptance rate of 0.234 is not always suitable. They show how to find the asymptotically optimal acceptance rate when needed, and they explain why it is sometimes necessary to turn to inhomogeneous proposal distributions. Their results are illustrated with a simple example.  相似文献   

8.
As the number of applications for Markov Chain Monte Carlo (MCMC) grows, the power of these methods as well as their shortcomings become more apparent. While MCMC yields an almost automatic way to sample a space according to some distribution, its implementations often fall short of this task as they may lead to chains which converge too slowly or get trapped within one mode of a multi-modal space. Moreover, it may be difficult to determine if a chain is only sampling a certain area of the space or if it has indeed reached stationarity. In this paper, we show how a simple modification of the proposal mechanism results in faster convergence of the chain and helps to circumvent the problems described above. This mechanism, which is based on an idea from the field of “small-world” networks, amounts to adding occasional “wild” proposals to any local proposal scheme. We demonstrate through both theory and extensive simulations, that these new proposal distributions can greatly outperform the traditional local proposals when it comes to exploring complex heterogenous spaces and multi-modal distributions. Our method can easily be applied to most, if not all, problems involving MCMC and unlike many other remedies which improve the performance of MCMC it preserves the simplicity of the underlying algorithm.  相似文献   

9.
Finite mixtures of multivariate skew t (MST) distributions have proven to be useful in modelling heterogeneous data with asymmetric and heavy tail behaviour. Recently, they have been exploited as an effective tool for modelling flow cytometric data. A number of algorithms for the computation of the maximum likelihood (ML) estimates for the model parameters of mixtures of MST distributions have been put forward in recent years. These implementations use various characterizations of the MST distribution, which are similar but not identical. While exact implementation of the expectation-maximization (EM) algorithm can be achieved for ‘restricted’ characterizations of the component skew t-distributions, Monte Carlo (MC) methods have been used to fit the ‘unrestricted’ models. In this paper, we review several recent fitting algorithms for finite mixtures of multivariate skew t-distributions, at the same time clarifying some of the connections between the various existing proposals. In particular, recent results have shown that the EM algorithm can be implemented exactly for faster computation of ML estimates for mixtures with unrestricted MST components. The gain in computational time is effected by noting that the semi-infinite integrals on the E-step of the EM algorithm can be put in the form of moments of the truncated multivariate non-central t-distribution, similar to the restricted case, which subsequently can be expressed in terms of the non-truncated form of the central t-distribution function for which fast algorithms are available. We present comparisons to illustrate the relative performance of the restricted and unrestricted models, and demonstrate the usefulness of the recently proposed methodology for the unrestricted MST mixture, by some applications to three real datasets.  相似文献   

10.
In this paper, we present a general formulation of an algorithm, the adaptive independent chain (AIC), that was introduced in a special context in Gåsemyr et al . [ Methodol. Comput. Appl. Probab. 3 (2001)]. The algorithm aims at producing samples from a specific target distribution Π, and is an adaptive, non-Markovian version of the Metropolis–Hastings independent chain. A certain parametric class of possible proposal distributions is fixed, and the parameters of the proposal distribution are updated periodically on the basis of the recent history of the chain, thereby obtaining proposals that get ever closer to Π. We show that under certain conditions, the algorithm produces an exact sample from Π in a finite number of iterations, and hence that it converges to Π. We also present another adaptive algorithm, the componentwise adaptive independent chain (CAIC), which may be an alternative in particular in high dimensions. The CAIC may be regarded as an adaptive approximation to the Gibbs sampler updating parametric approximations to the conditionals of Π.  相似文献   

11.
This paper is concerned with ranked set sampling theory which is useful to estimate the population mean when the order of a sample of small size can be found without measurements or with rough methods. Consider n sets of elements each set having size m. All elements of each set are ranked but only one is selected and quantified. The average of the quantified elements is adopted as the estimator. In this paper we introduce the notion of selective probability which is a generalization of a notion from Yanagawa and Shirahata (1976). Uniformly optimal unbiased procedures are found for some (n,m). Furthermore, procedures which are unbiased for all distributions and are good for symmetric distributions are studied for (n,m) which do not allow uniformly optimal unbiased procedures.  相似文献   

12.
Different strategies have been proposed to improve mixing and convergence properties of Markov Chain Monte Carlo algorithms. These are mainly concerned with customizing the proposal density in the Metropolis–Hastings algorithm to the specific target density and require a detailed exploratory analysis of the stationary distribution and/or some preliminary experiments to determine an efficient proposal. Various Metropolis–Hastings algorithms have been suggested that make use of previously sampled states in defining an adaptive proposal density. Here we propose a general class of adaptive Metropolis–Hastings algorithms based on Metropolis–Hastings-within-Gibbs sampling. For the case of a one-dimensional target distribution, we present two novel algorithms using mixtures of triangular and trapezoidal densities. These can also be seen as improved versions of the all-purpose adaptive rejection Metropolis sampling (ARMS) algorithm to sample from non-logconcave univariate densities. Using various different examples, we demonstrate their properties and efficiencies and point out their advantages over ARMS and other adaptive alternatives such as the Normal Kernel Coupler.  相似文献   

13.
Markov chain Monte Carlo (MCMC) is an important computational technique for generating samples from non-standard probability distributions. A major challenge in the design of practical MCMC samplers is to achieve efficient convergence and mixing properties. One way to accelerate convergence and mixing is to adapt the proposal distribution in light of previously sampled points, thus increasing the probability of acceptance. In this paper, we propose two new adaptive MCMC algorithms based on the Independent Metropolis–Hastings algorithm. In the first, we adjust the proposal to minimize an estimate of the cross-entropy between the target and proposal distributions, using the experience of pre-runs. This approach provides a general technique for deriving natural adaptive formulae. The second approach uses multiple parallel chains, and involves updating chains individually, then updating a proposal density by fitting a Bayesian model to the population. An important feature of this approach is that adapting the proposal does not change the limiting distributions of the chains. Consequently, the adaptive phase of the sampler can be continued indefinitely. We include results of numerical experiments indicating that the new algorithms compete well with traditional Metropolis–Hastings algorithms. We also demonstrate the method for a realistic problem arising in Comparative Genomics.  相似文献   

14.
For the purpose of maximum likelihood estimation of static parameters, we apply a kernel smoother to the particles in the standard SIR filter for non-linear state space models with additive Gaussian observation noise. This reduces the Monte Carlo error in the estimates of both the posterior density of the states and the marginal density of the observation at each time point. We correct for variance inflation in the smoother, which together with the use of Gaussian kernels, results in a Gaussian (Kalman) update when the amount of smoothing turns to infinity. We propose and study of a criterion for choosing the optimal bandwidth h in the kernel smoother. Finally, we illustrate our approach using examples from econometrics. Our filter is shown to be highly suited for dynamic models with high signal-to-noise ratio, for which the SIR filter has problems.  相似文献   

15.
We study Bayesian dynamic models for detecting changepoints in count time series that present structural breaks. As the inferential approach, we develop a parameter learning version of the algorithm proposed by Chopin [Chopin N. Dynamic detection of changepoints in long time series. Annals of the Institute of Statistical Mathematics 2007;59:349–366.], called the Chopin filter with parameter learning, which allows us to estimate the static parameters in the model. In this extension, the static parameters are addressed by using the kernel smoothing approximations proposed by Liu and West [Liu J, West M. Combined parameters and state estimation in simulation-based filtering. In: Doucet A, de Freitas N, Gordon N, editors. Sequential Monte Carlo methods in practice. New York: Springer-Verlag; 2001]. The proposed methodology is then applied to both simulated and real data sets and the time series models include distributions that allow for overdispersion and/or zero inflation. Since our procedure is general, robust and naturally adaptive because the particle filter approach does not require restrictive specifications to ensure its validity and effectiveness, we believe it is a valuable alternative for dealing with the problem of detecting changepoints in count time series. The proposed methodology is also suitable for count time series with no changepoints and for independent count data.  相似文献   

16.
Using the ‘grouping vector’ notion and employing a Dirichlet prior to the unknown mixing parameters viz., the unknown mixing proportiona, the Bayee estimates of the mixing proportions in finite mixtures of known distributions are obtained. These estimates are based on the optimal grouping of the sample data. An algorithm is proposed to obtain the optimal grouping of the eample observations when the component densities belong to the family of densities possessing the monotone likelihood ratio property. A numerical study is carried out for the case of mixtures of two normal densities.  相似文献   

17.
The particle Gibbs sampler is a systematic way of using a particle filter within Markov chain Monte Carlo. This results in an off‐the‐shelf Markov kernel on the space of state trajectories, which can be used to simulate from the full joint smoothing distribution for a state space model in a Markov chain Monte Carlo scheme. We show that the particle Gibbs Markov kernel is uniformly ergodic under rather general assumptions, which we will carefully review and discuss. In particular, we provide an explicit rate of convergence, which reveals that (i) for fixed number of data points, the convergence rate can be made arbitrarily good by increasing the number of particles and (ii) under general mixing assumptions, the convergence rate can be kept constant by increasing the number of particles superlinearly with the number of observations. We illustrate the applicability of our result by studying in detail a common stochastic volatility model with a non‐compact state space.  相似文献   

18.
Summary.  We consider the on-line Bayesian analysis of data by using a hidden Markov model, where inference is tractable conditional on the history of the state of the hidden component. A new particle filter algorithm is introduced and shown to produce promising results when analysing data of this type. The algorithm is similar to the mixture Kalman filter but uses a different resampling algorithm. We prove that this resampling algorithm is computationally efficient and optimal, among unbiased resampling algorithms, in terms of minimizing a squared error loss function. In a practical example, that of estimating break points from well-log data, our new particle filter outperforms two other particle filters, one of which is the mixture Kalman filter, by between one and two orders of magnitude.  相似文献   

19.
Kernel density classification and boosting: an L2 analysis   总被引:1,自引:0,他引:1  
Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results for kernel methods apply to estimation per se and not necessarily to classification. In this paper we show that when estimating the difference between two densities, the optimal smoothing parameters are increasing functions of the sample size of the complementary group, and we provide a small simluation study which examines the relative performance of kernel density methods when the final goal is classification.A relative newcomer to the classification portfolio is boosting, and this paper proposes an algorithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously proposed method of bias reduction in kernel density estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces the bias whilst only slightly increasing the variance, with an overall reduction in error. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research.  相似文献   

20.
In this application note paper, we propose and examine the performance of a Bayesian approach for a homoscedastic nonlinear regression (NLR) model assuming errors with two-piece scale mixtures of normal (TP-SMN) distributions. The TP-SMN is a large family of distributions, covering both symmetrical/ asymmetrical distributions as well as light/heavy tailed distributions, and provides an alternative to another well-known family of distributions, called scale mixtures of skew-normal distributions. The proposed family and Bayesian approach provides considerable flexibility and advantages for NLR modelling in different practical settings. We examine the performance of the approach using simulated and real data.KEYWORDS: Gibbs sampling, MCMC method, nonlinear regression model, scale mixtures of normal family, two-piece distributions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号