首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
ABSTRACT

Longitudinal studies often entail non-Gaussian primary responses. When dropout occurs, potential non-ignorability of the missingness process may occur, and a joint model for the primary response and a time-to-event may represent an appealing tool to account for dependence between the two processes. As an extension to the GLMJM, recently proposed, and based on Gaussian latent effects, we assume that the random effects follow a smooth, P-spline based density. To estimate model parameters, we adopt a two-step conditional Newton–Raphson algorithm. Since the maximization of the penalized log-likelihood requires numerical integration over the random effect, which is often cumbersome, we opt for a pseudo-adaptive Gaussian quadrature rule to approximate the model likelihood. We discuss the proposed model by analyzing an original dataset on dilated cardiomyopathies and through a simulation study.  相似文献   

2.
3.
Joint models with shared Gaussian random effects have been conventionally used in analysis of longitudinal outcome and survival endpoint in biomedical or public health research. However, misspecifying the normality assumption of random effects can lead to serious bias in parameter estimation and future prediction. In this paper, we study joint models of general longitudinal outcomes and survival endpoint but allow the underlying distribution of shared random effect to be completely unknown. For inference, we propose to use a mixture of Gaussian distributions as an approximation to this unknown distribution and adopt an Expectation–Maximization (EM) algorithm for computation. Either AIC and BIC criteria are adopted for selecting the number of mixtures. We demonstrate the proposed method via a number of simulation studies. We illustrate our approach with the data from the Carolina Head and Neck Cancer Study (CHANCE).  相似文献   

4.
We implement a joint model for mixed multivariate longitudinal measurements, applied to the prediction of time until lung transplant or death in idiopathic pulmonary fibrosis. Specifically, we formulate a unified Bayesian joint model for the mixed longitudinal responses and time-to-event outcomes. For the longitudinal model of continuous and binary responses, we investigate multivariate generalized linear mixed models using shared random effects. Longitudinal and time-to-event data are assumed to be independent conditional on available covariates and shared parameters. A Markov chain Monte Carlo algorithm, implemented in OpenBUGS, is used for parameter estimation. To illustrate practical considerations in choosing a final model, we fit 37 different candidate models using all possible combinations of random effects and employ a deviance information criterion to select a best-fitting model. We demonstrate the prediction of future event probabilities within a fixed time interval for patients utilizing baseline data, post-baseline longitudinal responses, and the time-to-event outcome. The performance of our joint model is also evaluated in simulation studies.  相似文献   

5.
A longitudinal study commonly follows a set of variables, measured for each individual repeatedly over time, and usually suffers from incomplete data problem. A common approach for dealing with longitudinal categorical responses is to use the Generalized Linear Mixed Model (GLMM). This model induces the potential relation between response variables over time via a vector of random effects, assumed to be shared parameters in the non-ignorable missing mechanism. Most GLMMs assume that the random-effects parameters follow a normal or symmetric distribution and this leads to serious problems in real applications. In this paper, we propose GLMMs for the analysis of incomplete multivariate longitudinal categorical responses with a non-ignorable missing mechanism based on a shared parameter framework with the less restrictive assumption of skew-normality for the random effects. These models may contain incomplete data with monotone and non-monotone missing patterns. The performance of the model is evaluated using simulation studies and a well-known longitudinal data set extracted from a fluvoxamine trial is analyzed to determine the profile of fluvoxamine in ambulatory clinical psychiatric practice.  相似文献   

6.
The shared-parameter model and its so-called hierarchical or random-effects extension are widely used joint modeling approaches for a combination of longitudinal continuous, binary, count, missing, and survival outcomes that naturally occurs in many clinical and other studies. A random effect is introduced and shared or allowed to differ between two or more repeated measures or longitudinal outcomes, thereby acting as a vehicle to capture association between the outcomes in these joint models. It is generally known that parameter estimates in a linear mixed model (LMM) for continuous repeated measures or longitudinal outcomes allow for a marginal interpretation, even though a hierarchical formulation is employed. This is not the case for the generalized linear mixed model (GLMM), that is, for non-Gaussian outcomes. The aforementioned joint models formulated for continuous and binary or two longitudinal binomial outcomes, using the LMM and GLMM, will naturally have marginal interpretation for parameters associated with the continuous outcome but a subject-specific interpretation for the fixed effects parameters relating covariates to binary outcomes. To derive marginally meaningful parameters for the binary models in a joint model, we adopt the marginal multilevel model (MMM) due to Heagerty [13] and Heagerty and Zeger [14] and formulate a joint MMM for two longitudinal responses. This enables to (1) capture association between the two responses and (2) obtain parameter estimates that have a population-averaged interpretation for both outcomes. The model is applied to two sets of data. The results are compared with those obtained from the existing approaches such as generalized estimating equations, GLMM, and the model of Heagerty [13]. Estimates were found to be very close to those from single analysis per outcome but the joint model yields higher precision and allows for quantifying the association between outcomes. Parameters were estimated using maximum likelihood. The model is easy to fit using available tools such as the SAS NLMIXED procedure.  相似文献   

7.
This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance–covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.  相似文献   

8.
In this paper, a joint model for analyzing multivariate mixed ordinal and continuous responses, where continuous outcomes may be skew, is presented. For modeling the discrete ordinal responses, a continuous latent variable approach is considered and for describing continuous responses, a skew-normal mixed effects model is used. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation. Some simulation studies are performed for illustration of the proposed approach. The results of the simulation studies show that the use of the separate models or the normal distributional assumption for shared random effects and within-subject errors of continuous and ordinal variables, instead of the joint modeling under a skew-normal distribution, leads to biased parameter estimates. The approach is used for analyzing a part of the British Household Panel Survey (BHPS) data set. Annual income and life satisfaction are considered as the continuous and the ordinal longitudinal responses, respectively. The annual income variable is severely skewed, therefore, the use of the normality assumption for the continuous response does not yield acceptable results. The results of data analysis show that gender, marital status, educational levels and the amount of money spent on leisure have a significant effect on annual income, while marital status has the highest impact on life satisfaction.  相似文献   

9.
In this paper, a linear mixed effects model is used to fit skewed longitudinal data in the presence of dropout. Two distributional assumptions are considered to produce background for heavy tailed models. One is the linear mixed model with skew-normal random effects and normal errors and the other one is the linear mixed model with skew-normal errors and normal random effects. An ECM algorithm is developed to obtain the parameter estimates. Also an empirical Bayes approach is used for estimating random effects. A simulation study is implemented to investigate the performance of the presented algorithm. Results of an application are also reported where standard errors of estimates are calculated using the Bootstrap approach.  相似文献   

10.
The joint models for longitudinal data and time-to-event data have recently received numerous attention in clinical and epidemiologic studies. Our interest is in modeling the relationship between event time outcomes and internal time-dependent covariates. In practice, the longitudinal responses often show non linear and fluctuated curves. Therefore, the main aim of this paper is to use penalized splines with a truncated polynomial basis to parameterize the non linear longitudinal process. Then, the linear mixed-effects model is applied to subject-specific curves and to control the smoothing. The association between the dropout process and longitudinal outcomes is modeled through a proportional hazard model. Two types of baseline risk functions are considered, namely a Gompertz distribution and a piecewise constant model. The resulting models are referred to as penalized spline joint models; an extension of the standard joint models. The expectation conditional maximization (ECM) algorithm is applied to estimate the parameters in the proposed models. To validate the proposed algorithm, extensive simulation studies were implemented followed by a case study. In summary, the penalized spline joint models provide a new approach for joint models that have improved the existing standard joint models.  相似文献   

11.
Non ignorable missing data is a common problem in longitudinal studies. Latent class models are attractive for simplifying the modeling of missing data when the data are subject to either a monotone or intermittent missing data pattern. In our study, we propose a new two-latent-class model for categorical data with informative dropouts, dividing the observed data into two latent classes; one class in which the outcomes are deterministic and a second one in which the outcomes can be modeled using logistic regression. In the model, the latent classes connect the longitudinal responses and the missingness process under the assumption of conditional independence. Parameters are estimated by the method of maximum likelihood estimation based on the above assumptions and the tetrachoric correlation between responses within the same subject. We compare the proposed method with the shared parameter model and the weighted GEE model using the areas under the ROC curves in the simulations and the application to the smoking cessation data set. The simulation results indicate that the proposed two-latent-class model performs well under different missing procedures. The application results show that our proposed method is better than the shared parameter model and the weighted GEE model.  相似文献   

12.
A random effects model for analyzing mixed longitudinal count and ordinal data is presented where the count response is inflated in two points (k and l) and an (k,l)-Inflated Power series distribution is used as its distribution. A full likelihood-based approach is used to obtain maximum likelihood estimates of parameters of the model. For data with non-ignorable missing values models with probit model for missing mechanism are used.The dependence between longitudinal sequences of responses and inflation parameters are investigated using a random effects approach. Also, to investigate the correlation between mixed ordinal and count responses of each individuals at each time, a shared random effect is used. In order to assess the performance of the model, a simulation study is performed for a case that the count response has (k,l)-Inflated Binomial distribution. Performance comparisons of count-ordinal random effect model, Zero-Inflated ordinal random effects model and (k,l)-Inflated ordinal random effects model are also given. The model is applied to a real social data set from the first two waves of the national longitudinal study of adolescent to adult health (Add Health study). In this data set, the joint responses are the number of days in a month that each individual smoked as the count response and the general health condition of each individual as the ordinal response. For the count response there is incidence of excess values of 0 and 30.  相似文献   

13.
We propose a semiparametric approach based on proportional hazards and copula method to jointly model longitudinal outcomes and the time-to-event. The dependence between the longitudinal outcomes on the covariates is modeled by a copula-based times series, which allows non-Gaussian random effects and overcomes the limitation of the parametric assumptions in existing linear and nonlinear random effects models. A modified partial likelihood method using estimated covariates at failure times is employed to draw statistical inference. The proposed model and method are applied to analyze a set of progression to AIDS data in a study of the association between the human immunodeficiency virus viral dynamics and the time trend in the CD4/CD8 ratio with measurement errors. Simulations are also reported to evaluate the proposed model and method.  相似文献   

14.
The current study follows an educational intervention on bottle-weaning to simultaneously evaluate effects of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11–13 months. In this paper, we propose to use shared parameter models and random effects models to model these outcomes jointly. Our joint models consist of two submodels: a two-part submodel for modeling the odds of bottle use and the intensity of daily milk intake from bottles, and a linear mixed submodel for modeling the intensity of daily energy intake. The two submodels are linked by either shared random effects or separate but correlated random effects. We investigate whether the intervention effects, parameter estimates, and model fit differ between shared parameter models and random effects models.  相似文献   

15.
In this paper, we develop a conditional model for analyzing mixed bivariate continuous and ordinal longitudinal responses. We propose a quantile regression model with random effects for analyzing continuous responses. For this purpose, an Asymmetric Laplace Distribution (ALD) is allocated for continuous response given random effects. For modeling ordinal responses, a cumulative logit model is used, via specifying a latent variable model, with considering other random effects. Therefore, the intra-association between continuous and ordinal responses is taken into account using their own exclusive random effects. But, the inter-association between two mixed responses is taken into account by adding a continuous response term in the ordinal model. We use a Bayesian approach via Markov chain Monte Carlo method for analyzing the proposed conditional model and to estimate unknown parameters, a Gibbs sampler algorithm is used. Moreover, we illustrate an application of the proposed model using a part of the British Household Panel Survey data set. The results of data analysis show that gender, age, marital status, educational level and the amount of money spent on leisure have significant effects on annual income. Also, the associated parameter is significant in using the best fitting proposed conditional model, thus it should be employed rather than analyzing separate models.  相似文献   

16.
In many medical studies, patients are followed longitudinally and interest is on assessing the relationship between longitudinal measurements and time to an event. Recently, various authors have proposed joint modeling approaches for longitudinal and time-to-event data for a single longitudinal variable. These joint modeling approaches become intractable with even a few longitudinal variables. In this paper we propose a regression calibration approach for jointly modeling multiple longitudinal measurements and discrete time-to-event data. Ideally, a two-stage modeling approach could be applied in which the multiple longitudinal measurements are modeled in the first stage and the longitudinal model is related to the time-to-event data in the second stage. Biased parameter estimation due to informative dropout makes this direct two-stage modeling approach problematic. We propose a regression calibration approach which appropriately accounts for informative dropout. We approximate the conditional distribution of the multiple longitudinal measurements given the event time by modeling all pairwise combinations of the longitudinal measurements using a bivariate linear mixed model which conditions on the event time. Complete data are then simulated based on estimates from these pairwise conditional models, and regression calibration is used to estimate the relationship between longitudinal data and time-to-event data using the complete data. We show that this approach performs well in estimating the relationship between multivariate longitudinal measurements and the time-to-event data and in estimating the parameters of the multiple longitudinal process subject to informative dropout. We illustrate this methodology with simulations and with an analysis of primary biliary cirrhosis (PBC) data.  相似文献   

17.
Multivariate longitudinal or clustered data are commonly encountered in clinical trials and toxicological studies. Typically, there is no single standard endpoint to assess the toxicity or efficacy of the compound of interest, but co‐primary endpoints are available to assess the toxic effects or the working of the compound. Modeling the responses jointly is thus appealing to draw overall inferences using all responses and to capture the association among the responses. Non‐Gaussian outcomes are often modeled univariately using exponential family models. To accommodate both the overdispersion and hierarchical structure in the data, Molenberghs et al. A family of generalized linear models for repeated measures with normal and conjugate random effects. Statistical Science 2010; 25:325–347 proposed using two separate sets of random effects. This papers considers a model for multivariate data with hierarchically clustered and overdispersed non‐Gaussian data. Gamma random effect for the over‐dispersion and normal random effects for the clustering in the data are being used. The two outcomes are jointly analyzed by assuming that the normal random effects for both endpoints are correlated. The association structure between the response is analytically derived. The fit of the joint model to data from a so‐called comet assay are compared with the univariate analysis of the two outcomes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We propose a flexible functional approach for modelling generalized longitudinal data and survival time using principal components. In the proposed model the longitudinal observations can be continuous or categorical data, such as Gaussian, binomial or Poisson outcomes. We generalize the traditional joint models that treat categorical data as continuous data by using some transformations, such as CD4 counts. The proposed model is data-adaptive, which does not require pre-specified functional forms for longitudinal trajectories and automatically detects characteristic patterns. The longitudinal trajectories observed with measurement error or random error are represented by flexible basis functions through a possibly nonlinear link function, combining dimension reduction techniques resulting from functional principal component (FPC) analysis. The relationship between the longitudinal process and event history is assessed using a Cox regression model. Although the proposed model inherits the flexibility of non-parametric methods, the estimation procedure based on the EM algorithm is still parametric in computation, and thus simple and easy to implement. The computation is simplified by dimension reduction for random coefficients or FPC scores. An iterative selection procedure based on Akaike information criterion (AIC) is proposed to choose the tuning parameters, such as the knots of spline basis and the number of FPCs, so that appropriate degree of smoothness and fluctuation can be addressed. The effectiveness of the proposed approach is illustrated through a simulation study, followed by an application to longitudinal CD4 counts and survival data which were collected in a recent clinical trial to compare the efficiency and safety of two antiretroviral drugs.  相似文献   

19.
In clinical practice, the profile of each subject's CD4 response from a longitudinal study may follow a ‘broken stick’ like trajectory, indicating multiple phases of increase and/or decline in response. Such multiple phases (changepoints) may be important indicators to help quantify treatment effect and improve management of patient care. Although it is a common practice to analyze complex AIDS longitudinal data using nonlinear mixed-effects (NLME) or nonparametric mixed-effects (NPME) models in the literature, NLME or NPME models become a challenge to estimate changepoint due to complicated structures of model formulations. In this paper, we propose a changepoint mixed-effects model with random subject-specific parameters, including the changepoint for the analysis of longitudinal CD4 cell counts for HIV infected subjects following highly active antiretroviral treatment. The longitudinal CD4 data in this study may exhibit departures from symmetry, may encounter missing observations due to various reasons, which are likely to be non-ignorable in the sense that missingness may be related to the missing values, and may be censored at the time of the subject going off study-treatment, which is a potentially informative dropout mechanism. Inferential procedures can be complicated dramatically when longitudinal CD4 data with asymmetry (skewness), incompleteness and informative dropout are observed in conjunction with an unknown changepoint. Our objective is to address the simultaneous impact of skewness, missingness and informative censoring by jointly modeling the CD4 response and dropout time processes under a Bayesian framework. The method is illustrated using a real AIDS data set to compare potential models with various scenarios, and some interested results are presented.  相似文献   

20.
Dependent data arise in many studies. Frequently adopted sampling designs, such as cluster, multilevel, spatial, and repeated measures, may induce this dependence, which the analysis of the data needs to take into due account. In a previous publication (Geraci and Bottai in Biostatistics 8:140–154, 2007), we proposed a conditional quantile regression model for continuous responses where subject-specific random intercepts were included to account for within-subject dependence in the context of longitudinal data analysis. The approach hinged upon the link existing between the minimization of weighted absolute deviations, typically used in quantile regression, and the maximization of a Laplace likelihood. Here, we consider an extension of those models to more complex dependence structures in the data, which are modeled by including multiple random effects in the linear conditional quantile functions. We also discuss estimation strategies to reduce the computational burden and inefficiency associated with the Monte Carlo EM algorithm we have proposed previously. In particular, the estimation of the fixed regression coefficients and of the random effects’ covariance matrix is based on a combination of Gaussian quadrature approximations and non-smooth optimization algorithms. Finally, a simulation study and a number of applications of our models are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号