首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new model is proposed for the joint distribution of paired survival times generated from clinical trials and certain reliability settings. The new model can be considered an extension to the bivariate exponential models studied in the literature. Here, a more flexible bivariate Weibull model will be derived, and two exact parametric tests for testing the equality of marginal survival distributions are developed.  相似文献   

2.
For clinical trials with time‐to‐event endpoints, predicting the accrual of the events of interest with precision is critical in determining the timing of interim and final analyses. For example, overall survival (OS) is often chosen as the primary efficacy endpoint in oncology studies, with planned interim and final analyses at a pre‐specified number of deaths. Often, correlated surrogate information, such as time‐to‐progression (TTP) and progression‐free survival, are also collected as secondary efficacy endpoints. It would be appealing to borrow strength from the surrogate information to improve the precision of the analysis time prediction. Currently available methods in the literature for predicting analysis timings do not consider utilizing the surrogate information. In this article, using OS and TTP as an example, a general parametric model for OS and TTP is proposed, with the assumption that disease progression could change the course of the overall survival. Progression‐free survival, related both to OS and TTP, will be handled separately, as it can be derived from OS and TTP. The authors seek to develop a prediction procedure using a Bayesian method and provide detailed implementation strategies under certain assumptions. Simulations are performed to evaluate the performance of the proposed method. An application to a real study is also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
SUMMARY Using San Francisco city clinic cohort data, we estimate the HIV seroconversion distribution by both non-parametric and parametric methods, and illustrate the effects of age on this distribution. The non-parametric methods include the Turnbull method, the Bacchetti method, the expectation, maximization and smoothing (EMS) method and the penalized spline method. The seroconversion density curves estimated by these nonparametric methods are of bimodal nature with obvious effects of age. As a result of the bimodal nature of the seroconversion curves, the parametric models considered are mixtures of two distributions taken from the generalized log-logistic distribution with three parameters, the Weibull distribution and the log-normal distribution. In terms of the logarithm of the likelihood values, it appears that the non-parametric methods with smoothing as well as without smoothing (i.e. the Turnbull method) provided much better fits than did the parametric models. Among the non-parametric methods, the EMS and the spline estimates are more appealing, because the unsmoothed Turnbull estimates are very unstable and because the Bacchetti estimates have a longer tail. Among the parametric models, the mixture of a generalized log-logistic distribution with three parameters and a Weibull distribution or a log-normal distribution provided better fits than did other mixtures of parametric models.  相似文献   

4.
In this paper, we investigate the performance of different parametric and nonparametric approaches for analyzing overdispersed person–time–event rates in the clinical trial setting. We show that the likelihood‐based parametric approach may not maintain the right size for the tested overdispersed person–time–event data. The nonparametric approaches may use an estimator as either the mean of the ratio of number of events over follow‐up time within each subjects or the ratio of the mean of the number of events over the mean follow‐up time in all the subjects. Among these, the ratio of the means is a consistent estimator and can be studied analytically. Asymptotic properties of all estimators were studied through numerical simulations. This research shows that the nonparametric ratio of the mean estimator is to be recommended in analyzing overdispersed person–time data. When sample size is small, some resampling‐based approaches can yield satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The product limit or Kaplan‐Meier (KM) estimator is commonly used to estimate the survival function in the presence of incomplete time to event. Application of this method assumes inherently that the occurrence of an event is known with certainty. However, the clinical diagnosis of an event is often subject to misclassification due to assay error or adjudication error, by which the event is assessed with some uncertainty. In the presence of such errors, the true distribution of the time to first event would not be estimated accurately using the KM method. We develop a method to estimate the true survival distribution by incorporating negative predictive values and positive predictive values, into a KM‐like method of estimation. This allows us to quantify the bias in the KM survival estimates due to the presence of misclassified events in the observed data. We present an unbiased estimator of the true survival function and its variance. Asymptotic properties of the proposed estimators are provided, and these properties are examined through simulations. We demonstrate our methods using data from the Viral Resistance to Antiviral Therapy of Hepatitis C study.  相似文献   

6.
Biomarkers that predict efficacy and safety for a given drug therapy become increasingly important for treatment strategy and drug evaluation in personalized medicine. Methodology for appropriately identifying and validating such biomarkers is critically needed, although it is very challenging to develop, especially in trials of terminal diseases with survival endpoints. The marker‐by‐treatment predictiveness curve serves this need by visualizing the treatment effect on survival as a function of biomarker for each treatment. In this article, we propose the weighted predictiveness curve (WPC). Based on the nature of the data, it generates predictiveness curves by utilizing either parametric or nonparametric approaches. Especially for nonparametric predictiveness curves, by incorporating local assessment techniques, it requires minimum model assumptions and provides great flexibility to visualize the marker‐by‐treatment relationship. WPC can be used to compare biomarkers and identify the one with the highest potential impact. Equally important, by simultaneously viewing several treatment‐specific predictiveness curves across the biomarker range, WPC can also guide the biomarker‐based treatment regimens. Simulations representing various scenarios are employed to evaluate the performance of WPC. Application on a well‐known liver cirrhosis trial sheds new light on the data and leads to discovery of novel patterns of treatment biomarker interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The computation of the renewal function when the distribution function is completely known has received much attention in the literature. However, in many cases the form of the distribution function is unknown and has to be estimated nonparametrically. A nonparametric estimator for the renewal function for complete data was suggested by Frees (1986). In many cases, however, censoring of the lifetime might occur. We shall present parametric and nonparametric estimators of the renewal function based on censored data. In a simulation study we compare the nonparametric estimators with parametric estimators for the Weibull and lognormal distribution. The study suggests that the nonparametric estimator is a viable alternative to the parametric estimators when the lifetime distribution is unknown. Also, the nonparametric estimator is computationally simpler than the parametric estimator.  相似文献   

8.
Summary.  In survival data that are collected from phase III clinical trials on breast cancer, a patient may experience more than one event, including recurrence of the original cancer, new primary cancer and death. Radiation oncologists are often interested in comparing patterns of local or regional recurrences alone as first events to identify a subgroup of patients who need to be treated by radiation therapy after surgery. The cumulative incidence function provides estimates of the cumulative probability of locoregional recurrences in the presence of other competing events. A simple version of the Gompertz distribution is proposed to parameterize the cumulative incidence function directly. The model interpretation for the cumulative incidence function is more natural than it is with the usual cause-specific hazard parameterization. Maximum likelihood analysis is used to estimate simultaneously parametric models for cumulative incidence functions of all causes. The parametric cumulative incidence approach is applied to a data set from the National Surgical Adjuvant Breast and Bowel Project and compared with analyses that are based on parametric cause-specific hazard models and nonparametric cumulative incidence estimation.  相似文献   

9.
The Weibull distribution is composited with Pareto model to obtain a flexible, reliable long-tailed parametric distribution for modeling unimodal failure rate data. The hazard function of the composite family accommodates decreasing and unimodal failure rates, which are separated by the boundary line of the space of shape parameter, gamma, when it equals to a known constant. The least square and maximum likelihood parameter estimation techniques are discussed. The advantages of using the proposed family are demonstrated and compared by illustrating well-known examples: guinea pigs survival time data, head and neck cancer data, and nasopharynx cancer survival data.  相似文献   

10.
In this paper we outline a class of fully parametric proportional hazards models, in which the baseline hazard is assumed to be a power transform of the time scale, corresponding to assuming that survival times follow a Weibull distribution. Such a class of models allows for the possibility of time varying hazard rates, but assumes a constant hazard ratio. We outline how Bayesian inference proceeds for such a class of models using asymptotic approximations which require only the ability to maximize the joint log posterior density. We apply these models to a clinical trial to assess the efficacy of neutron therapy compared to conventional treatment for patients with tumors of the pelvic region. In this trial there was prior information about the log hazard ratio both in terms of elicited clinical beliefs and the results of previous studies. Finally, we consider a number of extensions to this class of models, in particular the use of alternative baseline functions, and the extension to multi-state data.  相似文献   

11.
A novel class of hierarchical nonparametric Bayesian survival regression models for time-to-event data with uninformative right censoring is introduced. The survival curve is modeled as a random function whose prior distribution is defined using the beta-Stacy (BS) process. The prior mean of each survival probability and its prior variance are linked to a standard parametric survival regression model. This nonparametric survival regression can thus be anchored to any reference parametric form, such as a proportional hazards or an accelerated failure time model, allowing substantial departures of the predictive survival probabilities when the reference model is not supported by the data. Also, under this formulation the predictive survival probabilities will be close to the empirical survival distribution near the mode of the reference model and they will be shrunken towards its probability density in the tails of the empirical distribution.  相似文献   

12.
With the emergence of novel therapies exhibiting distinct mechanisms of action compared to traditional treatments, departure from the proportional hazard (PH) assumption in clinical trials with a time‐to‐event end point is increasingly common. In these situations, the hazard ratio may not be a valid statistical measurement of treatment effect, and the log‐rank test may no longer be the most powerful statistical test. The restricted mean survival time (RMST) is an alternative robust and clinically interpretable summary measure that does not rely on the PH assumption. We conduct extensive simulations to evaluate the performance and operating characteristics of the RMST‐based inference and against the hazard ratio–based inference, under various scenarios and design parameter setups. The log‐rank test is generally a powerful test when there is evident separation favoring 1 treatment arm at most of the time points across the Kaplan‐Meier survival curves, but the performance of the RMST test is similar. Under non‐PH scenarios where late separation of survival curves is observed, the RMST‐based test has better performance than the log‐rank test when the truncation time is reasonably close to the tail of the observed curves. Furthermore, when flat survival tail (or low event rate) in the experimental arm is expected, selecting the minimum of the maximum observed event time as the truncation timepoint for the RMST is not recommended. In addition, we recommend the inclusion of analysis based on the RMST curve over the truncation time in clinical settings where there is suspicion of substantial departure from the PH assumption.  相似文献   

13.
As the treatments of cancer progress, a certain number of cancers are curable if diagnosed early. In population‐based cancer survival studies, cure is said to occur when mortality rate of the cancer patients returns to the same level as that expected for the general cancer‐free population. The estimates of cure fraction are of interest to both cancer patients and health policy makers. Mixture cure models have been widely used because the model is easy to interpret by separating the patients into two distinct groups. Usually parametric models are assumed for the latent distribution for the uncured patients. The estimation of cure fraction from the mixture cure model may be sensitive to misspecification of latent distribution. We propose a Bayesian approach to mixture cure model for population‐based cancer survival data, which can be extended to county‐level cancer survival data. Instead of modeling the latent distribution by a fixed parametric distribution, we use a finite mixture of the union of the lognormal, loglogistic, and Weibull distributions. The parameters are estimated using the Markov chain Monte Carlo method. Simulation study shows that the Bayesian method using a finite mixture latent distribution provides robust inference of parameter estimates. The proposed Bayesian method is applied to relative survival data for colon cancer patients from the Surveillance, Epidemiology, and End Results (SEER) Program to estimate the cure fractions. The Canadian Journal of Statistics 40: 40–54; 2012 © 2012 Statistical Society of Canada  相似文献   

14.
Bayesian nonparametric methods have been applied to survival analysis problems since the emergence of the area of Bayesian nonparametrics. However, the use of the flexible class of Dirichlet process mixture models has been rather limited in this context. This is, arguably, to a large extent, due to the standard way of fitting such models that precludes full posterior inference for many functionals of interest in survival analysis applications. To overcome this difficulty, we provide a computational approach to obtain the posterior distribution of general functionals of a Dirichlet process mixture. We model the survival distribution employing a flexible Dirichlet process mixture, with a Weibull kernel, that yields rich inference for several important functionals. In the process, a method for hazard function estimation emerges. Methods for simulation-based model fitting, in the presence of censoring, and for prior specification are provided. We illustrate the modeling approach with simulated and real data.  相似文献   

15.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

16.
Summary.  Competing risks situations can be encountered in many research areas such as medicine, social science and engineering. The main stream of analyses of those competing risks data has been nonparametric or semiparametric in the statistical literature. We propose a new parametric family to parameterize the cumulative incidence function completely. The new distribution is sufficiently flexible to fit various shapes of hazard patterns in survival data and increases the efficiency of the cumulative incidence estimates over the distribution-free approaches. A simple two-sample parametric test statistic is also proposed to compare the cumulative incidence functions between two groups at a given time point. The new parametric approach is illustrated by using breast cancer data sets from the National Surgical Adjuvant Breast and Bowel Project.  相似文献   

17.
This article discusses estimation of the cure rate by means of the bounded cumulative hazard (BCH) model using interval censored data. The parametric and nonparametric estimation methods within the framework of the EM algorithm were employed for cure rate estimation and their results compared. The Turnbull estimator was used in the nonparametric estimation while in parametric method both the exponential and Weibull distributions were considered. We show via simulation that the nonparametric method is a viable alternative to the parametric one when the censoring rate is rapidly increasing.  相似文献   

18.
For clinical trials with time‐to‐event as the primary endpoint, the clinical cutoff is often event‐driven and the log‐rank test is the most commonly used statistical method for evaluating treatment effect. However, this method relies on the proportional hazards assumption in that it has the maximal power in this circumstance. In certain disease areas or populations, some patients can be curable and never experience the events despite a long follow‐up. The event accumulation may dry out after a certain period of follow‐up and the treatment effect could be reflected as the combination of improvement of cure rate and the delay of events for those uncurable patients. Study power depends on both cure rate improvement and hazard reduction. In this paper, we illustrate these practical issues using simulation studies and explore sample size recommendations, alternative ways for clinical cutoffs, and efficient testing methods with the highest study power possible.  相似文献   

19.
The authors define a class of “partially linear single‐index” survival models that are more flexible than the classical proportional hazards regression models in their treatment of covariates. The latter enter the proposed model either via a parametric linear form or a nonparametric single‐index form. It is then possible to model both linear and functional effects of covariates on the logarithm of the hazard function and if necessary, to reduce the dimensionality of multiple covariates via the single‐index component. The partially linear hazards model and the single‐index hazards model are special cases of the proposed model. The authors develop a likelihood‐based inference to estimate the model components via an iterative algorithm. They establish an asymptotic distribution theory for the proposed estimators, examine their finite‐sample behaviour through simulation, and use a set of real data to illustrate their approach.  相似文献   

20.
As new diagnostic tests are developed and marketed, it is very important to be able to compare the accuracy of a given two continuous‐scale diagnostic tests. An effective method to evaluate the difference between the diagnostic accuracy of two tests is to compare partial areas under the receiver operating characteristic curves (AUCs). In this paper, we review existing parametric methods. Then, we propose a new semiparametric method and a new nonparametric method to investigate the difference between two partial AUCs. For the difference between two partial AUCs under each method, we derive a normal approximation, define an empirical log‐likelihood ratio, and show that the empirical log‐likelihood ratio follows a scaled chi‐square distribution. We construct five confidence intervals for the difference based on normal approximation, bootstrap, and empirical likelihood methods. Finally, extensive simulation studies are conducted to compare the finite‐sample performances of these intervals, and a real example is used as an application of our recommended intervals. The simulation results indicate that the proposed hybrid bootstrap and empirical likelihood intervals outperform other existing intervals in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号