首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single‐index models for longitudinal data that may be unbalanced. In particular, a new three‐stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resulting estimators properly account for the within‐subject correlation. We show that the parameter estimators are asymptotically semiparametrically efficient. We also show that the asymptotic variance of the link function estimator is minimized when the working error covariance matrices are correctly specified. The new estimators are more efficient than estimators in the existing literature. These asymptotic results are obtained without assuming normality. The finite‐sample performance of the proposed method is demonstrated by simulation studies. In addition, two real‐data examples are analyzed to illustrate the methodology.  相似文献   

2.
We consider estimation in the single‐index model where the link function is monotone. For this model, a profile least‐squares estimator has been proposed to estimate the unknown link function and index. Although it is natural to propose this procedure, it is still unknown whether it produces index estimates that converge at the parametric rate. We show that this holds if we solve a score equation corresponding to this least‐squares problem. Using a Lagrangian formulation, we show how one can solve this score equation without any reparametrization. This makes it easy to solve the score equations in high dimensions. We also compare our method with the effective dimension reduction and the penalized least‐squares estimator methods, both available on CRAN as R packages, and compare with link‐free methods, where the covariates are elliptically symmetric.  相似文献   

3.
This paper deals with the problem of predicting the real‐valued response variable using explanatory variables containing both multivariate random variable and random curve. The proposed functional partial linear single‐index model treats the multivariate random variable as linear part and the random curve as functional single‐index part, respectively. To estimate the non‐parametric link function, the functional single‐index and the parameters in the linear part, a two‐stage estimation procedure is proposed. Compared with existing semi‐parametric methods, the proposed approach requires no initial estimation and iteration. Asymptotical properties are established for both the parameters in the linear part and the functional single‐index. The convergence rate for the non‐parametric link function is also given. In addition, asymptotical normality of the error variance is obtained that facilitates the construction of confidence region and hypothesis testing for the unknown parameter. Numerical experiments including simulation studies and a real‐data analysis are conducted to evaluate the empirical performance of the proposed method.  相似文献   

4.
We propose a semiparametric estimator for single‐index models with censored responses due to detection limits. In the presence of left censoring, the mean function cannot be identified without any parametric distributional assumptions, but the quantile function is still identifiable at upper quantile levels. To avoid parametric distributional assumption, we propose to fit censored quantile regression and combine information across quantile levels to estimate the unknown smooth link function and the index parameter. Under some regularity conditions, we show that the estimated link function achieves the non‐parametric optimal convergence rate, and the estimated index parameter is asymptotically normal. The simulation study shows that the proposed estimator is competitive with the omniscient least squares estimator based on the latent uncensored responses for data with normal errors but much more efficient for heavy‐tailed data under light and moderate censoring. The practical value of the proposed method is demonstrated through the analysis of a human immunodeficiency virus antibody data set.  相似文献   

5.
Under missing at random, we estimate the unknown link function and the direction parameter in a single index model. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, the optimal convergence rate for the estimator of the link function is obtained and simulation results support the theoretical results of the paper.  相似文献   

6.
An extended single‐index model is considered when responses are missing at random. A three‐step estimation procedure is developed to define an estimator for the single‐index parameter vector by a joint estimating equation. The proposed estimator is shown to be asymptotically normal. An algorithm for computing this estimator is proposed. This algorithm only involves one‐dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Some simulation studies are conducted to investigate the finite sample performances of the proposed estimators.  相似文献   

7.
This paper considers the robustness properties in the time series context of the least median of squares (LMS) estimator. The influence function of the LMS estimator is derived under additive outlier contamination. This influence function is redescending and bounded for fixed values of the AR parameters. The gross-error sensitivity, however, is an unbounded function of the AR parameters. In order to asses the global robustness behavior of the LMS estimator, we consider several notions of breakdown. The breakdown points of the LMS estimator depend on the value of the underlying AR parameter. Generally, the breakdown point is below one half for high values of the AR parameter. The bias curves of the LMS estimator reveal, however, that the magnitude of outliers has to be considerable in order to cause breakdown.  相似文献   

8.
In a single index Poisson regression model with unknown link function, the index parameter can be root- n consistently estimated by the method of pseudo maximum likelihood. In this paper, we study, by simulation arguments, the practical validity of the asymptotic behaviour of the pseudo maximum likelihood index estimator and of some associated cross-validation bandwidths. A robust practical rule for implementing the pseudo maximum likelihood estimation method is suggested, which uses the bootstrap for estimating the variance of the index estimator and a variant of bagging for numerically stabilizing its variance. Our method gives reasonable results even for moderate sized samples; thus, it can be used for doing statistical inference in practical situations. The procedure is illustrated through a real data example.  相似文献   

9.
In this paper, we consider partially linear additive models with an unknown link function, which include single‐index models and additive models as special cases. We use polynomial spline method for estimating the unknown link function as well as the component functions in the additive part. We establish that convergence rates for all nonparametric functions are the same as in one‐dimensional nonparametric regression. For a faster rate of the parametric part, we need to define appropriate ‘projection’ that is more complicated than that defined previously for partially linear additive models. Compared to previous approaches, a distinct advantage of our estimation approach in implementation is that estimation directly reduces estimation in the single‐index model and can thus deal with much larger dimensional problems than previous approaches for additive models with unknown link functions. Simulations and a real dataset are used to illustrate the proposed model.  相似文献   

10.
The nonlinear responses of species to environmental variability can play an important role in the maintenance of ecological diversity. Nonetheless, many models use parametric nonlinear terms which pre-determine the ecological conclusions. Motivated by this concern, we study the estimate of the second derivative (curvature) of the link function in a functional single index model. Since the coefficient function and the link function are both unknown, the estimate is expressed as a nested optimization. We first estimate the coefficient function by minimizing squared error where the link function is estimated with a Nadaraya-Watson estimator for each candidate coefficient function. The first and second derivatives of the link function are then estimated via local-quadratic regression using the estimated coefficient function. In this paper, we derive a convergence rate for the curvature of the nonlinear response. In addition, we prove that the argument of the linear predictor can be estimated root-n consistently. However, practical implementation of the method requires solving a nonlinear optimization problem, and our results show that the estimates of the link function and the coefficient function are quite sensitive to the choices of starting values.  相似文献   

11.
This article is concerned with inference for the parameter vector in stationary time series models based on the frequency domain maximum likelihood estimator. The traditional method consistently estimates the asymptotic covariance matrix of the parameter estimator and usually assumes the independence of the innovation process. For dependent innovations, the asymptotic covariance matrix of the estimator depends on the fourth‐order cumulants of the unobserved innovation process, a consistent estimation of which is a difficult task. In this article, we propose a novel self‐normalization‐based approach to constructing a confidence region for the parameter vector in such models. The proposed procedure involves no smoothing parameter, and is widely applicable to a large class of long/short memory time series models with weakly dependent innovations. In simulation studies, we demonstrate favourable finite sample performance of our method in comparison with the traditional method and a residual block bootstrap approach.  相似文献   

12.
This paper compares minimum distance estimation with best linear unbiased estimation to determine which technique provides the most accurate estimates for location and scale parameters as applied to the three parameter Pareto distribution. Two minimum distance estimators are developed for each of the three distance measures used (Kolmogorov, Cramer‐von Mises, and Anderson‐Darling) resulting in six new estimators. For a given sample size 6 or 18 and shape parameter 1(1)4, the location and scale parameters are estimated. A Monte Carlo technique is used to generate the sample sets. The best linear unbiased estimator and the six minimum distance estimators provide parameter estimates based on each sample set. These estimates are compared using mean square error as the evaluation tool. Results show that the best linear unbaised estimator provided more accurate estimates of location and scale than did the minimum estimators tested.  相似文献   

13.
Abstract

In this article, we consider the inverse probability weighted estimators for a single-index model with missing covariates when the selection probabilities are known or unknown. It is shown that the estimator for the index parameter by using estimated selection probabilities has a smaller asymptotic variance than that with true selection probabilities, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for the index parameter in single index model. However, this difference disappears for the estimators of the link function. Some numerical examples and a real data application are also conducted to illustrate the performances of the estimators.  相似文献   

14.
Single‐index models provide one way of reducing the dimension in regression analysis. The statistical literature has focused mainly on estimating the index coefficients, the mean function, and their asymptotic properties. For accurate statistical inference it is equally important to estimate the error variance of these models. We examine two estimators of the error variance in a single‐index model and compare them with a few competing estimators with respect to their corresponding asymptotic properties. Using a simulation study, we evaluate the finite‐sample performance of our estimators against their competitors.  相似文献   

15.
In this paper, we extend the focused information criterion (FIC) to copula models. Copulas are often used for applications where the joint tail behavior of the variables is of particular interest, and selecting a copula that captures this well is then essential. Traditional model selection methods such as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) aim at finding the overall best‐fitting model, which is not necessarily the one best suited for the application at hand. The FIC, on the other hand, evaluates and ranks candidate models based on the precision of their point estimates of a context‐given focus parameter. This could be any quantity of particular interest, for example, the mean, a correlation, conditional probabilities, or measures of tail dependence. We derive FIC formulae for the maximum likelihood estimator, the two‐stage maximum likelihood estimator, and the so‐called pseudo‐maximum‐likelihood (PML) estimator combined with parametric margins. Furthermore, we confirm the validity of the AIC formula for the PML estimator combined with parametric margins. To study the numerical behavior of FIC, we have carried out a simulation study, and we have also analyzed a multivariate data set pertaining to abalones. The results from the study show that the FIC successfully ranks candidate models in terms of their performance, defined as how well they estimate the focus parameter. In terms of estimation precision, FIC clearly outperforms AIC, especially when the focus parameter relates to only a specific part of the model, such as the conditional upper‐tail probability.  相似文献   

16.
The finite sample performance of the rank estimator of regression coefficients obtained using the iteratively reweighted least squares (IRLS) of Sievers and Abebe (2004) is evaluated. Efficiency comparisons show that the IRLS method does quite well in comparison to least squares or the traditional rank estimates in cases of moderate-tailed error distributions; however, the IRLS method does not appear to be suitable for heavy-tailed data. Moreover, our results show that the IRLS estimator will have an unbounded influence function even if we use an initial estimator with a bounded influence function.  相似文献   

17.
Weighted log‐rank estimating function has become a standard estimation method for the censored linear regression model, or the accelerated failure time model. Well established statistically, the estimator defined as a consistent root has, however, rather poor computational properties because the estimating function is neither continuous nor, in general, monotone. We propose a computationally efficient estimator through an asymptotics‐guided Newton algorithm, in which censored quantile regression methods are tailored to yield an initial consistent estimate and a consistent derivative estimate of the limiting estimating function. We also develop fast interval estimation with a new proposal for sandwich variance estimation. The proposed estimator is asymptotically equivalent to the consistent root estimator and barely distinguishable in samples of practical size. However, computation time is typically reduced by two to three orders of magnitude for point estimation alone. Illustrations with clinical applications are provided.  相似文献   

18.
In this paper, we consider the problem of testing for a parameter change in Poisson autoregressive models. We suggest two types of cumulative sum (CUSUM) tests, namely, those based on estimates and residuals. We first demonstrate that the conditional maximum likelihood estimator (CMLE) is strongly consistent and asymptotically normal and then construct the CMLE‐based CUSUM test. It is shown that under regularity conditions, its limiting null distribution is a function of independent Brownian bridges. Next, we construct the residual‐based CUSUM test and derive its limiting null distribution. Simulation results are provided for illustration. A real‐data analysis is performed on data for polio incidence and campylobacteriosis infections.  相似文献   

19.
We consider a recurrent event wherein the inter‐event times are independent and identically distributed with a common absolutely continuous distribution function F. In this article, interest is in the problem of testing the null hypothesis that F belongs to some parametric family where the q‐dimensional parameter is unknown. We propose a general Chi‐squared test in which cell boundaries are data dependent. An estimator of the parameter obtained by minimizing a quadratic form resulting from a properly scaled vector of differences between Observed and Expected frequencies is used to construct the test. This estimator is known as the minimum chi‐square estimator. Large sample properties of the proposed test statistic are established using empirical processes tools. A simulation study is conducted to assess the performance of the test under parameter misspecification, and our procedures are applied to a fleet of Boeing 720 jet planes' air conditioning system failures.  相似文献   

20.
We consider a semiparametric single‐index model and suppose that endogeneity is present in the explanatory variables. The presence of an instrument is assumed, that is, non‐correlated with the error term. We propose an estimator of the parametric component of the model, which is the solution of an ill‐posed inverse problem. The estimator is shown to be asymptotically normal under certain regularity conditions. A simulation study is conducted to illustrate the finite sample performance of the proposed estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号