首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper proposes a high dimensional factor multivariate stochastic volatility (MSV) model in which factor covariance matrices are driven by Wishart random processes. The framework allows for unrestricted specification of intertemporal sensitivities, which can capture the persistence in volatilities, kurtosis in returns, and correlation breakdowns and contagion effects in volatilities. The factor structure allows addressing high dimensional setups used in portfolio analysis and risk management, as well as modeling conditional means and conditional variances within the model framework. Owing to the complexity of the model, we perform inference using Markov chain Monte Carlo simulation from the posterior distribution. A simulation study is carried out to demonstrate the efficiency of the estimation algorithm. We illustrate our model on a data set that includes 88 individual equity returns and the two Fama–French size and value factors. With this application, we demonstrate the ability of the model to address high dimensional applications suitable for asset allocation, risk management, and asset pricing.  相似文献   

2.
This paper provides a semiparametric framework for modeling multivariate conditional heteroskedasticity. We put forward latent stochastic volatility (SV) factors as capturing the commonality in the joint conditional variance matrix of asset returns. This approach is in line with common features as studied by Engle and Kozicki (1993), and it allows us to focus on identication of factors and factor loadings through first- and second-order conditional moments only. We assume that the time-varying part of risk premiums is based on constant prices of factor risks, and we consider a factor SV in mean model. Additional specification of both expectations and volatility of future volatility of factors provides conditional moment restrictions, through which the parameters of the model are all identied. These conditional moment restrictions pave the way for instrumental variables estimation and GMM inference.  相似文献   

3.
We propose an empirical framework to assess the likelihood of joint and conditional sovereign default from observed CDS prices. Our model is based on a dynamic skewed-t distribution that captures all salient features of the data, including skewed and heavy-tailed changes in the price of CDS protection against sovereign default, as well as dynamic volatilities and correlations that ensure that uncertainty and risk dependence can increase in times of stress. We apply the framework to euro area sovereign CDS spreads during the euro area debt crisis. Our results reveal significant time-variation in distress dependence and spill-over effects for sovereign default risk. We investigate market perceptions of joint and conditional sovereign risk around announcements of Eurosystem asset purchases programs, and document a strong impact on joint risk.  相似文献   

4.
Abstract

A key question for understanding the cross-section of expected returns of equities is the following: which factors, from a given collection of factors, are risk factors, equivalently, which factors are in the stochastic discount factor (SDF)? Though the SDF is unobserved, assumptions about which factors (from the available set of factors) are in the SDF restricts the joint distribution of factors in specific ways, as a consequence of the economic theory of asset pricing. A different starting collection of factors that go into the SDF leads to a different set of restrictions on the joint distribution of factors. The conditional distribution of equity returns has the same restricted form, regardless of what is assumed about the factors in the SDF, as long as the factors are traded, and hence the distribution of asset returns is irrelevant for isolating the risk-factors. The restricted factors models are distinct (nonnested) and do not arise by omitting or including a variable from a full model, thus precluding analysis by standard statistical variable selection methods, such as those based on the lasso and its variants. Instead, we develop what we call a Bayesian model scan strategy in which each factor is allowed to enter or not enter the SDF and the resulting restricted models (of which there are 114,674 in our empirical study) are simultaneously confronted with the data. We use a Student-t distribution for the factors, and model-specific independent Student-t distribution for the location parameters, a training sample to fix prior locations, and a creative way to arrive at the joint distribution of several other model-specific parameters from a single prior distribution. This allows our method to be essentially a scaleable and tuned-black-box method that can be applied across our large model space with little to no user-intervention. The model marginal likelihoods, and implied posterior model probabilities, are compared with the prior probability of 1/114,674 of each model to find the best-supported model, and thus the factors most likely to be in the SDF. We provide detailed simulation evidence about the high finite-sample accuracy of the method. Our empirical study with 13 leading factors reveals that the highest marginal likelihood model is a Student-t distributed factor model with 5 degrees of freedom and 8 risk factors.  相似文献   

5.
Abstract

Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite.

Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances.  相似文献   

6.
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a Markov Chain Monte Carlo (MCMC) sampling algorithm. Candidate draws for the unobserved volatilities are obtained in blocks by applying the Kalman filter and simulation smoother to a linearization of a nonlinear state space representation of the model. Crucially, information from both the spot and option prices affects the draws via the specification of a bivariate measurement equation, with implied Black–Scholes volatilities used to proxy observed option prices in the candidate model. Alternative models nested within the Heston (1993) framework are ranked via posterior odds ratios, as well as via fit, predictive and hedging performance. The method is illustrated using Australian News Corporation spot and option price data.  相似文献   

7.
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a Markov Chain Monte Carlo (MCMC) sampling algorithm. Candidate draws for the unobserved volatilities are obtained in blocks by applying the Kalman filter and simulation smoother to a linearization of a nonlinear state space representation of the model. Crucially, information from both the spot and option prices affects the draws via the specification of a bivariate measurement equation, with implied Black-Scholes volatilities used to proxy observed option prices in the candidate model. Alternative models nested within the Heston (1993) framework are ranked via posterior odds ratios, as well as via fit, predictive and hedging performance. The method is illustrated using Australian News Corporation spot and option price data.  相似文献   

8.
We develop a discrete-time affine stochastic volatility model with time-varying conditional skewness (SVS). Importantly, we disentangle the dynamics of conditional volatility and conditional skewness in a coherent way. Our approach allows current asset returns to be asymmetric conditional on current factors and past information, which we term contemporaneous asymmetry. Conditional skewness is an explicit combination of the conditional leverage effect and contemporaneous asymmetry. We derive analytical formulas for various return moments that are used for generalized method of moments (GMM) estimation. Applying our approach to S&P500 index daily returns and option data, we show that one- and two-factor SVS models provide a better fit for both the historical and the risk-neutral distribution of returns, compared to existing affine generalized autoregressive conditional heteroscedasticity (GARCH), and stochastic volatility with jumps (SVJ) models. Our results are not due to an overparameterization of the model: the one-factor SVS models have the same number of parameters as their one-factor GARCH competitors and less than the SVJ benchmark.  相似文献   

9.
This paper assesses the econometric and economic value consequences of neglecting structural breaks in dynamic correlation models and in the context of asset allocation framework. It is shown that changes in the parameters of the conditional correlation process can lead to biased estimates of persistence. Monte Carlo simulations reveal that short-run persistence is downward biased while long-run persistence is severely upward biased, leading to spurious high persistence of shocks to conditional correlation. An application to stock returns supports these results and concludes that neglecting such structural shifts could lead to misleading decisions on portfolio diversification, hedging, and risk management.  相似文献   

10.
The general pattern of estimated volatilities of macroeconomic and financial variables is often broadly similar. We propose two models in which conditional volatilities feature comovement and study them using U.S. macroeconomic data. The first model specifies the conditional volatilities as driven by a single common unobserved factor, plus an idiosyncratic component. We label this model BVAR with general factor stochastic volatility (BVAR-GFSV) and we show that the loss in terms of marginal likelihood from assuming a common factor for volatility is moderate. The second model, which we label BVAR with common stochastic volatility (BVAR-CSV), is a special case of the BVAR-GFSV in which the idiosyncratic component is eliminated and the loadings to the factor are set to 1 for all the conditional volatilities. Such restrictions permit a convenient Kronecker structure for the posterior variance of the VAR coefficients, which in turn permits estimating the model even with large datasets. While perhaps misspecified, the BVAR-CSV model is strongly supported by the data when compared against standard homoscedastic BVARs, and it can produce relatively good point and density forecasts by taking advantage of the information contained in large datasets.  相似文献   

11.
This paper conducts simulation-based comparison of several stochastic volatility models with leverage effects. Two new variants of asymmetric stochastic volatility models, which are subject to a logarithmic transformation on the squared asset returns, are proposed. The leverage effect is introduced into the model through correlation either between the innovations of the observation equation and the latent process, or between the logarithm of squared asset returns and the latent process. Suitable Markov Chain Monte Carlo algorithms are developed for parameter estimation and model comparison. Simulation results show that our proposed formulation of the leverage effect and the accompanying inference methods give rise to reasonable parameter estimates. Applications to two data sets uncover a negative correlation (which can be interpreted as a leverage effect) between the observed returns and volatilities, and a negative correlation between the logarithm of squared returns and volatilities.  相似文献   

12.
ABSTRACT

Many financial decisions such as portfolio allocation, risk management, option pricing and hedge strategies are based on the forecast of the conditional variances, covariances and correlations of financial returns. Although the decisions depend on the forecasts covariance matrix little is known about effects of outliers on the uncertainty associated with these forecasts. In this paper we analyse these effects on the context of dynamic conditional correlation models when the uncertainty is measured using bootstrap methods. We also propose a bootstrap procedure to obtain forecast densities for return, volatilities, conditional correlation and Value-at-Risk that is robust to outliers. The results are illustrated with simulated and real data.  相似文献   

13.
This article explains the high level and the countercyclical variation of the equity premium in a consumption-based asset pricing model with low large-scale risk aversion. Investors have gain-loss utility over consumption relative to slowly time-varying habit. Stocks deliver low returns in recessions when consumption falls below habit; investors therefore require a high premium for holding stocks. The model's conditional moment restrictions are tested on consumption and asset returns data. The empirical estimate of large-scale risk aversion is low, whereas the estimate of loss aversion agrees with prior experimental evidence.  相似文献   

14.
In this article, we investigate the effects of careful modeling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end, we allow the individual unconditional variances in conditional correlation generalized autoregressive conditional heteroscedasticity (CC-GARCH) models to change smoothly over time by incorporating a nonstationary component in the variance equations such as the spline-GARCH model and the time-varying (TV)-GARCH model. The variance equations combine the long-run and the short-run dynamic behavior of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange. The results suggest that accounting for deterministic changes in the unconditional variances improves the fit of the multivariate CC-GARCH models to the data. The effect of careful specification of the variance equations on the estimated correlations is variable: in some cases rather small, in others more discernible. We also show empirically that the CC-GARCH models with time-varying unconditional variances using the TV-GARCH model outperform the other models under study in terms of out-of-sample forecasting performance. In addition, we find that portfolio volatility-timing strategies based on time-varying unconditional variances often outperform the unmodeled long-run variances strategy out-of-sample. As a by-product, we generalize news impact surfaces to the situation in which both the GARCH equations and the conditional correlations contain a deterministic component that is a function of time.  相似文献   

15.
Multi-asset modelling is of fundamental importance to financial applications such as risk management and portfolio selection. In this article, we propose a multivariate stochastic volatility modelling framework with a parsimonious and interpretable correlation structure. Building on well-established evidence of common volatility factors among individual assets, we consider a multivariate diffusion process with a common-factor structure in the volatility innovations. Upon substituting an observable market proxy for the common volatility factor, we markedly improve the estimation of several model parameters and latent volatilities. The model is applied to a portfolio of several important constituents of the S&P500 in the financial sector, with the VIX index as the common-factor proxy. We find that the prediction intervals for asset forecasts are comparable to those of more complex dependence models, but that option-pricing uncertainty can be greatly reduced by adopting a common-volatility structure. The Canadian Journal of Statistics 48: 36–61; 2020 © 2020 Statistical Society of Canada  相似文献   

16.
This article introduces a new specification for the heterogenous autoregressive (HAR) model for the realized volatility of S&P 500 index returns. In this modeling framework, the coefficients of the HAR are allowed to be time-varying with unspecified functional forms. The local linear method with the cross-validation (CV) bandwidth selection is applied to estimate the time-varying coefficient HAR (TVC-HAR) model, and a bootstrap method is used to construct the point-wise confidence bands for the coefficient functions. Furthermore, the asymptotic distribution of the proposed local linear estimators of the TVC-HAR model is established under some mild conditions. The results of the simulation study show that the local linear estimator with CV bandwidth selection has favorable finite sample properties. The outcomes of the conditional predictive ability test indicate that the proposed nonparametric TVC-HAR model outperforms the parametric HAR and its extension to HAR with jumps and/or GARCH in terms of multi-step out-of-sample forecasting, in particular in the post-2003 crisis and 2007 global financial crisis (GFC) periods, during which financial market volatilities were unduly high.  相似文献   

17.
This paper deals with the pricing of derivatives written on several underlying assets or factors satisfying a multivariate model with Wishart stochastic volatility matrix. This multivariate stochastic volatility model leads to a closed-form solution for the conditional Laplace transform, and quasi-explicit solutions for derivative prices written on more than one asset or underlying factor. Two examples are presented: (i) a multiasset extension of the stochastic volatility model introduced by Heston (1993), and (ii) a model for credit risk analysis that extends the model of Merton (1974) to a framework with stochastic firm liability, stochastic volatility, and several firms. A bivariate version of the stochastic volatility model is estimated using stock prices and moment conditions derived from the joint unconditional Laplace transform of the stock returns.  相似文献   

18.
In this paper the class of Bilinear GARCH (BL-GARCH) models is proposed. BL-GARCH models allow to capture asymmetries in the conditional variance of financial and economic time series by means of interactions between past shocks and volatilities. The availability of likelihood based inference is an attractive feature of BL-GARCH models. Under the assumption of conditional normality, the log-likelihood function can be maximized by means of an EM type algorithm. The main reason for using the EM algorithm is that it allows to obtain parameter estimates which naturally guarantee the positive definiteness of the conditional variance with no need for additional parameter constraints. We also derive a robust LM test statistic which can be used for model identification. Finally, the effectiveness of BL-GARCH models in capturing asymmetric volatility patterns in financial time series is assessed by means of an application to a time series of daily returns on the NASDAQ Composite stock market index.  相似文献   

19.
Bootstrap procedures are useful to obtain forecast densities for both returns and volatilities in the context of generalized autoregressive conditional heteroscedasticity models. In this paper, we analyse the effect of additive outliers on the finite sample properties of these bootstrap densities and show that, when obtained using maximum likelihood estimates of the parameters and standard filters for the volatilities, they are badly affected with dramatic consequences on the estimation of Value-at-Risk. We propose constructing bootstrap densities for returns and volatilities using a robust parameter estimator based on variance targeting implemented together with an adequate modification of the volatility filter. We show that the performance of the proposed procedure is adequate when compared with available robust alternatives. The results are illustrated with both simulated and real data.  相似文献   

20.
Theoretical models of contagion and spillovers allow for asset-specific shocks that can be directly transmitted from one asset to another, as well as indirectly transmitted across uncorrelated assets through some intermediary mechanism. Standard multivariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, however, provide estimates of volatilities and correlations based only on the direct transmission of shocks across assets. As such, spillover effects via an intermediary asset or market are not considered. In this article, a multivariate GARCH model is constructed that provides estimates of volatilities and correlations based on both directly and indirectly transmitted shocks. The model is applied to exchange rate and equity returns data. The results suggest that if a spillover component is observed in the data, the spillover augmented models provide significantly different volatility estimates compared to standard multivariate GARCH models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号