首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neighbor sum distinguishing total choosability of planar graphs   总被引:1,自引:1,他引:0  
A total-k-coloring of a graph G is a mapping \(c: V(G)\cup E(G)\rightarrow \{1, 2,\dots , k\}\) such that any two adjacent or incident elements in \(V(G)\cup E(G)\) receive different colors. For a total-k-coloring of G, let \(\sum _c(v)\) denote the total sum of colors of the edges incident with v and the color of v. If for each edge \(uv\in E(G)\), \(\sum _c(u)\ne \sum _c(v)\), then we call such a total-k-coloring neighbor sum distinguishing. The least number k needed for such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by \(\chi _{\Sigma }^{''}(G)\). Pil?niak and Wo?niak conjectured \(\chi _{\Sigma }^{''}(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that for any planar graph G with maximum degree \(\Delta (G)\), \(ch^{''}_{\Sigma }(G)\le \max \{\Delta (G)+3,16\}\), where \(ch^{''}_{\Sigma }(G)\) is the neighbor sum distinguishing total choosability of G.  相似文献   

2.
A proper total k-coloring \(\phi \) of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\dots , k\}\) such that no adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let \(m_{\phi }(v)\) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if \(m_{\phi }(u)\not =m_{\phi }(v)\) for each edge \(uv\in E(G).\) Let \(\chi _{\Sigma }^t(G)\) be the neighbor sum distinguishing total chromatic number of a graph G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi _{\Sigma }^t(G)\le \Delta (G)+3\). In this paper, we show that if G is a graph with treewidth \(\ell \ge 3\) and \(\Delta (G)\ge 2\ell +3\), then \(\chi _{\Sigma }^t(G)\le \Delta (G)+\ell -1\). This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when \(\ell =3\) and \(\Delta \ge 9\), we show that \(\Delta (G) + 1\le \chi _{\Sigma }^t(G)\le \Delta (G)+2\) and characterize graphs with equalities.  相似文献   

3.
Let \(G=(V,E)\) be a graph and \(\phi : V\cup E\rightarrow \{1,2,\ldots ,k\}\) be a proper total coloring of G. Let f(v) denote the sum of the color on a vertex v and the colors on all the edges incident with v. The coloring \(\phi \) is neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number of G, denoted by \(\chi _{\Sigma }''(G)\). Pil?niak and Wo?niak conjectured that \(\chi _{\Sigma }''(G)\le \Delta (G)+3\) for any simple graph. By using the famous Combinatorial Nullstellensatz, we prove that \(\chi _{\Sigma }''(G)\le \max \{\Delta (G)+2, 10\}\) for planar graph G without 4-cycles. The bound \(\Delta (G)+2\) is sharp if \(\Delta (G)\ge 8\).  相似文献   

4.
Let \(G=(V, E)\) be a simple graph and denote the set of edges incident to a vertex v by E(v). The neighbor sum distinguishing (NSD) total choice number of G, denoted by \(\mathrm{ch}_{\Sigma }^{t}(G)\), is the smallest integer k such that, after assigning each \(z\in V\cup E\) a set L(z) of k real numbers, G has a total coloring \(\phi \) satisfying \(\phi (z)\in L(z)\) for each \(z\in V\cup E\) and \(\sum _{z\in E(u)\cup \{u\}}\phi (z)\ne \sum _{z\in E(v)\cup \{v\}}\phi (z)\) for each \(uv\in E\). In this paper, we propose some reducible configurations of NSD list total coloring for general graphs by applying the Combinatorial Nullstellensatz. As an application, we present that \(\mathrm{ch}^{t}_{\Sigma }(G)\le \Delta (G)+3\) for every subcubic graph G.  相似文献   

5.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. A total-k-adjacent vertex distinguishing-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ''_{a}(G)\). It is known that \(\chi _{a}''(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 11\). In this paper, we show that if G is a planar graph with \(\Delta (G)\ge 10\), then \(\chi _{a}''(G)\le \Delta (G)+3\). Our approach is based on Combinatorial Nullstellensatz and the discharging method.  相似文献   

6.
A total-[k]-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that \(f(u)\ne f(v)\), where \(uv\in E(G)\). By \(\chi ^{\prime \prime }_{\prod }(G)\), we denote the smallest value k in such a coloring of G. We conjecture that \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a \(K_4\)-minor free graph with \(\Delta (G)\ge 4\), then \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2\).  相似文献   

7.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent or incident elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. An adjacent vertex distinguishing total-k-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ^{\prime \prime }_{a}(G)\). It is known that \(\chi _{a}^{\prime \prime }(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 10\). In this paper, we consider the list version of this coloring and show that if G is a planar graph with \(\Delta (G)\ge 11\), then \({ ch}_{a}^{\prime \prime }(G)\le \Delta (G)+3\), where \({ ch}^{\prime \prime }_a(G)\) is the adjacent vertex distinguishing total choosability.  相似文献   

8.
The concept of k-connectivity \(\kappa '_{k}(G)\) of a graph G, introduced by Chartrand in 1984, is a generalization of the cut-version of the classical connectivity. Another generalized connectivity of a graph G, named the generalized k-connectivity \(\kappa _{k}(G)\), mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. In this paper, we get the lower and upper bounds for the difference of these two parameters by showing that for a connected graph G of order n, if \(\kappa '_k(G)\ne n-k+1\) where \(k\ge 3\), then \(0\le \kappa '_k(G)-\kappa _k(G)\le n-k-1\); otherwise, \(-\lfloor \frac{k}{2}\rfloor +1\le \kappa '_k(G)-\kappa _k(G)\le n-k\). Moreover, all of these bounds are sharp. Some specific study is focused for the case \(k=3\). As results, we characterize the graphs with \(\kappa '_3(G)=\kappa _3(G)=t\) for \(t\in \{1, n-3, n-2\}\), and give a necessary condition for \(\kappa '_3(G)=\kappa _3(G)\) by showing that for a connected graph G of order n and size m, if \(\kappa '_3(G)=\kappa _3(G)=t\) where \(1\le t\le n-3\), then \(m\le {n-2\atopwithdelims ()2}+2t\). Moreover, the unique extremal graph is given for the equality to hold.  相似文献   

9.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

10.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   

11.
A double Roman dominating function (DRDF) on a graph \(G=(V,E)\) is a function \(f : V \rightarrow \{0, 1, 2, 3\}\) having the property that if \(f(v) = 0\), then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with \(f(w)=3\), and if \(f(v)=1\), then vertex v must have at least one neighbor w with \(f(w)\ge 2\). The weight of a DRDF f is the value \(f(V) = \sum _{u \in V}f(u)\). The double Roman domination number \(\gamma _{dR}(G)\) of a graph G is the minimum weight of a DRDF on G. Beeler et al. (Discrete Appl Math 211:23–29, 2016) observed that every connected graph G having minimum degree at least two satisfies the inequality \(\gamma _{dR}(G)\le \frac{6n}{5}\) and posed the question whether this bound can be improved. In this paper, we settle the question and prove that for any connected graph G of order n with minimum degree at least two, \(\gamma _{dR}(G)\le \frac{8n}{7}\).  相似文献   

12.
Let \(\chi _2(G)\) and \(\chi _2^l(G)\) be the 2-distance chromatic number and list 2-distance chromatic number of a graph G, respectively. Wegner conjectured that for each planar graph G with maximum degree \(\varDelta \) at least 4, \(\chi _2(G)\le \varDelta +5\) if \(4\le \varDelta \le 7\), and \(\chi _2(G)\le \lfloor \frac{3\varDelta }{2}\rfloor +1\) if \(\varDelta \ge 8\). Let G be a planar graph without 4,5-cycles. We show that if \(\varDelta \ge 26\), then \(\chi _2^l(G)\le \varDelta +3\). There exist planar graphs G with girth \(g(G)=6\) such that \(\chi _2^l(G)=\varDelta +2\) for arbitrarily large \(\varDelta \). In addition, we also discuss the list L(2, 1)-labeling number of G, and prove that \(\lambda _l(G)\le \varDelta +8\) for \(\varDelta \ge 27\).  相似文献   

13.
A tree T in an edge-colored graph is called a proper tree if no two adjacent edges of T receive the same color. Let G be a connected graph of order n and k be an integer with \(2\le k \le n\). For \(S\subseteq V(G)\) and \(|S| \ge 2\), an S-tree is a tree containing the vertices of S in G. A set \(\{T_1,T_2,\ldots ,T_\ell \}\) of S-trees is called internally disjoint if \(E(T_i)\cap E(T_j)=\emptyset \) and \(V(T_i)\cap V(T_j)=S\) for \(1\le i\ne j\le \ell \). For a set S of k vertices of G, the maximum number of internally disjoint S-trees in G is denoted by \(\kappa (S)\). The k-connectivity \(\kappa _k(G)\) of G is defined by \(\kappa _k(G)=\min \{\kappa (S)\mid S\) is a k-subset of \(V(G)\}\). For a connected graph G of order n and for two integers k and \(\ell \) with \(2\le k\le n\) and \(1\le \ell \le \kappa _k(G)\), the \((k,\ell )\)-proper index \(px_{k,\ell }(G)\) of G is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of V(G), there exist \(\ell \) internally disjoint proper S-trees connecting them. In this paper, we show that for every pair of positive integers k and \(\ell \) with \(k \ge 3\) and \(\ell \le \kappa _k(K_{n,n})\), there exists a positive integer \(N_1=N_1(k,\ell )\) such that \(px_{k,\ell }(K_n) = 2\) for every integer \(n \ge N_1\), and there exists also a positive integer \(N_2=N_2(k,\ell )\) such that \(px_{k,\ell }(K_{m,n}) = 2\) for every integer \(n \ge N_2\) and \(m=O(n^r) (r \ge 1)\). In addition, we show that for every \(p \ge c\root k \of {\frac{\log _a n}{n}}\) (\(c \ge 5\)), \(px_{k,\ell }(G_{n,p})\le 2\) holds almost surely, where \(G_{n,p}\) is the Erd?s–Rényi random graph model.  相似文献   

14.
Let \(G = (V,E)\) be a finite graph and let \((\mathbb {A},+)\) be an abelian group with identity 0. Then G is \(\mathbb {A}\)-magic if and only if there exists a function \(\phi \) from E into \(\mathbb {A} - \{0\}\) such that for some \(c \in \mathbb {A}, \sum _{e \in E(v)} \phi (e) = c\) for every \(v \in V\), where E(v) is the set of edges incident to v. Additionally, G is zero-sum \(\mathbb {A}\)-magic if and only if \(\phi \) exists such that \(c = 0\). We consider zero-sum \(\mathbb {A}\)-magic labelings of graphs, with particular attention given to \(\mathbb {A} = \mathbb {Z}_{2j}^k\). For \(j \ge 1\), let \(\zeta _{2j}(G)\) be the smallest positive integer c such that G is zero-sum \(\mathbb {Z}_{2j}^c\)-magic if c exists; infinity otherwise. We establish upper bounds on \(\zeta _{2j}(G)\) when \(\zeta _{2j}(G)\) is finite, and show that \(\zeta _{2j}(G)\) is finite for all r-regular \(G, r \ge 2\). Appealing to classical results on the factors of cubic graphs, we prove that \(\zeta _4(G) \le 2\) for a cubic graph G, with equality if and only if G has no 1-factor. We discuss the problem of classifying cubic graphs according to the collection of finite abelian groups for which they are zero-sum group-magic.  相似文献   

15.
For graphs G and H, let \(G\rightarrow (H,H)\) signify that any red/blue edge coloring of G contains a monochromatic H as a subgraph. Denote \(\mathcal {H}(\Delta ,n)=\{H:|V(H)|=n,\Delta (H)\le \Delta \}\). For any \(\Delta \) and n, we say that G is partition universal for \(\mathcal {H}(\Delta ,n)\) if \(G\rightarrow (H,H)\) for every \(H\in \mathcal {H}(\Delta ,n)\). Let \(G_r(N,p)\) be the random spanning subgraph of the complete r-partite graph \(K_r(N)\) with N vertices in each part, in which each edge of \(K_r(N)\) appears with probability p independently and randomly. We prove that for fixed \(\Delta \ge 2\) there exist constants rB and C depending only on \(\Delta \) such that if \(N\ge Bn\) and \(p=C(\log N/N)^{1/\Delta }\), then asymptotically almost surely \(G_r(N,p)\) is partition universal for \(\mathcal {H}(\Delta ,n)\).  相似文献   

16.
An adjacent vertex-distinguishing edge coloring of a graph is a proper edge coloring such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex-distinguishing edge chromatic number is the minimum number of colors required for an adjacent vertex-distinguishing edge coloring, denoted as \(\chi '_{as}(G)\). In this paper, we prove that for a connected graph G with maximum degree \(\Delta \ge 3\), \(\chi '_{as}(G)\le 3\Delta -1\), which proves the previous upper bound. We also prove that for a graph G with maximum degree \(\Delta \ge 458\) and minimum degree \(\delta \ge 8\sqrt{\Delta ln \Delta }\), \(\chi '_{as}(G)\le \Delta +1+5\sqrt{\Delta ln \Delta }\).  相似文献   

17.
The problem of list coloring of graphs appears in practical problems concerning channel or frequency assignment. In this paper, we study the minimum number of choosability of planar graphs. A graph G is edge-k-choosable if whenever every edge x is assigned with a list of at least k colors, L(x)), there exists an edge coloring \(\phi \) such that \(\phi (x) \in L(x)\). Similarly, A graph G is toal-k-choosable if when every element (edge or vertex) x is assigned with a list of at least k colors, L(x), there exists an total coloring \(\phi \) such that \(\phi (x) \in L(x)\). We proved \(\chi '_{l}(G)=\Delta \) and \(\chi ''_{l}(G)=\Delta +1\) for a planar graph G with maximum degree \(\Delta \ge 8\) and without chordal 6-cycles, where the list edge chromatic number \(\chi '_{l}(G)\) of G is the smallest integer k such that G is edge-k-choosable and the list total chromatic number \(\chi ''_{l}(G)\) of G is the smallest integer k such that G is total-k-choosable.  相似文献   

18.
A list assignment of G is a function L that assigns to each vertex \(v\in V(G)\) a list L(v) of available colors. Let r be a positive integer. For a given list assignment L of G, an (Lr)-coloring of G is a proper coloring \(\phi \) such that for any vertex v with degree d(v), \(\phi (v)\in L(v)\) and v is adjacent to at least \( min\{d(v),r\}\) different colors. The list r-hued chromatic number of G, \(\chi _{L,r}(G)\), is the least integer k such that for every list assignment L with \(|L(v)|=k\), \(v\in V(G)\), G has an (Lr)-coloring. We show that if \(r\ge 32\) and G is a planar graph without 4-cycles, then \(\chi _{L,r}(G)\le r+8\). This result implies that for a planar graph with maximum degree \(\varDelta \ge 26\) and without 4-cycles, Wagner’s conjecture in [Graphs with given diameter and coloring problem, Technical Report, University of Dortmund, Germany, 1977] holds.  相似文献   

19.
For a connected graph \(G = \left( V,E\right) \), a set \(S\subseteq E(G)\) is called a total edge-to-vertex monophonic set of a connected graph G if the subgraph induced by S has no isolated edges. The total edge-to-vertex monophonic number \(m_{tev}(G)\) of G is the minimum cardinality of its total edge-to-vertex monophonic set of G. The total edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size \(q \ge 3 \) with total edge-to-vertex monophonic number q is characterized. It is shown that for positive integers \(r_{m},d_{m}\) and \(l\ge 4\) with \(r_{m}< d_{m} \le 2 r_{m}\), there exists a connected graph G with \(\textit{rad}_ {m} G = r_{m}\), \(\textit{diam}_ {m} G = d_{m}\) and \(m_{tev}(G) = l\) and also shown that for every integers a and b with \(2 \le a \le b\), there exists a connected graph G such that \( m_{ev}\left( G\right) = b\) and \(m_{tev}(G) = a + b\). A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of S, denoted by \(f_{tev}(S)\) is the cardinality of a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of G, denoted by \(f_{tev}(G) = \textit{min}\{f_{tev}(S)\}\), where the minimum is taken over all total edge-to-vertex monophonic set S in G. The forcing total edge-to-vertex monophonic number of certain classes of graphs are determined and some of its general properties are studied. It is shown that for every integers a and b with \(0 \le a \le b\) and \(b \ge 2\), there exists a connected graph G such that \(f_{tev}(G) = a\) and \( m _{tev}(G) = b\), where \( f _{tev}(G)\) is the forcing total edge-to-vertex monophonic number of G.  相似文献   

20.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号