首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (\({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\)). We prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {NP}\)-hard on planar bipartite graphs of maximum degree 4. We also prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {APX}\)-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\). Finally, when \(k=1\), we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators.  相似文献   

2.
We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of k, we consider properties of \(D_k(G)\), the graph consisting of a node for each dominating set of size at most k and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that \(D_{\varGamma (G)+1}(G)\) is not necessarily connected, for \(\varGamma (G)\) the maximum cardinality of a minimal dominating set in G. The result holds even when graphs are constrained to be planar, of bounded tree-width, or b-partite for \(b \ge 3\). Moreover, we construct an infinite family of graphs such that \(D_{\gamma (G)+1}(G)\) has exponential diameter, for \(\gamma (G)\) the minimum size of a dominating set. On the positive side, we show that \(D_{n-\mu }(G)\) is connected and of linear diameter for any graph G on n vertices with a matching of size at least \(\mu +1\).  相似文献   

3.
For a connected graph \(G = \left( V,E\right) \), a set \(S\subseteq E(G)\) is called a total edge-to-vertex monophonic set of a connected graph G if the subgraph induced by S has no isolated edges. The total edge-to-vertex monophonic number \(m_{tev}(G)\) of G is the minimum cardinality of its total edge-to-vertex monophonic set of G. The total edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size \(q \ge 3 \) with total edge-to-vertex monophonic number q is characterized. It is shown that for positive integers \(r_{m},d_{m}\) and \(l\ge 4\) with \(r_{m}< d_{m} \le 2 r_{m}\), there exists a connected graph G with \(\textit{rad}_ {m} G = r_{m}\), \(\textit{diam}_ {m} G = d_{m}\) and \(m_{tev}(G) = l\) and also shown that for every integers a and b with \(2 \le a \le b\), there exists a connected graph G such that \( m_{ev}\left( G\right) = b\) and \(m_{tev}(G) = a + b\). A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of S, denoted by \(f_{tev}(S)\) is the cardinality of a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of G, denoted by \(f_{tev}(G) = \textit{min}\{f_{tev}(S)\}\), where the minimum is taken over all total edge-to-vertex monophonic set S in G. The forcing total edge-to-vertex monophonic number of certain classes of graphs are determined and some of its general properties are studied. It is shown that for every integers a and b with \(0 \le a \le b\) and \(b \ge 2\), there exists a connected graph G such that \(f_{tev}(G) = a\) and \( m _{tev}(G) = b\), where \( f _{tev}(G)\) is the forcing total edge-to-vertex monophonic number of G.  相似文献   

4.
The First-Fit (or Grundy) chromatic number of a graph G denoted by \(\chi _{{_\mathsf{FF}}}(G)\), is the maximum number of colors used by the First-Fit (greedy) coloring algorithm when applied to G. In this paper we first show that any graph G contains a bipartite subgraph of Grundy number \(\lfloor \chi _{{_\mathsf{FF}}}(G) /2 \rfloor +1\). Using this result we prove that for every \(t\ge 2\) there exists a real number \(c>0\) such that in every graph G on n vertices and without cycles of length 2t, any First-Fit coloring of G uses at most \(cn^{1/t}\) colors. It is noted that for \(t=2\) this bound is the best possible. A compactness conjecture is also proposed concerning the First-Fit chromatic number involving the even girth of graphs.  相似文献   

5.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

6.
The Roman game domination number of an undirected graph G is defined by the following game. Players \(\mathcal {A}\) and \(\mathcal {D}\) orient the edges of the graph G alternately, with \(\mathcal {D}\) playing first, until all edges are oriented. Player \(\mathcal {D}\) (frequently called Dominator) tries to minimize the Roman domination number of the resulting digraph, while player \(\mathcal {A}\) (Avoider) tries to maximize it. This game gives a unique number depending only on G, if we suppose that both \(\mathcal {A}\) and \(\mathcal {D}\) play according to their optimal strategies. This number is called the Roman game domination number of G and is denoted by \(\gamma _{Rg}(G)\). In this paper we initiate the study of the Roman game domination number of a graph and we establish some bounds on \(\gamma _{Rg}(G)\). We also determine the Roman game domination number for some classes of graphs.  相似文献   

7.
A class \(\mathcal{G}\) of simple graphs is said to be girth-closed (odd-girth-closed) if for any positive integer g there exists a graph \(\mathrm {G} \in \mathcal{G}\) such that the girth (odd-girth) of \(\mathrm {G}\) is \(\ge g\). A girth-closed (odd-girth-closed) class \(\mathcal{G}\) of graphs is said to be pentagonal (odd-pentagonal) if there exists a positive integer \(g^*\) depending on \(\mathcal{G}\) such that any graph \(\mathrm {G} \in \mathcal{G}\) whose girth (odd-girth) is greater than \(g^*\) admits a homomorphism to the five cycle (i.e. is \(\mathrm {C}_{_{5}}\)-colourable). Although, the question “Is the class of simple 3-regular graphs pentagonal?” proposed by Ne?et?il (Taiwan J Math 3:381–423, 1999) is still a central open problem, Gebleh (Theorems and computations in circular colourings of graphs, 2007) has shown that there exists an odd-girth-closed subclass of simple 3-regular graphs which is not odd-pentagonal. In this article, motivated by the conjecture that the class of generalized Petersen graphs is odd-pentagonal, we show that finding the odd girth of generalized Petersen graphs can be transformed to an integer programming problem, and using the combinatorial and number theoretic properties of this problem, we explicitly compute the odd girth of such graphs, showing that the class is odd-girth-closed. Also, we obtain upper and lower bounds for the circular chromatic number of these graphs, and as a consequence, we show that the subclass containing generalized Petersen graphs \(\mathrm {Pet}(n,k)\) for which either k is even, n is odd and \(n\mathop {\equiv }\limits ^{k-1}\pm 2\) or both n and k are odd and \(n\ge 5k\) is odd-pentagonal. This in particular shows the existence of nontrivial odd-pentagonal subclasses of 3-regular simple graphs.  相似文献   

8.
Given a connected and weighted graph \(G=(V, E)\) with each vertex v having a nonnegative weight w(v), the minimum weighted connected vertex cover \(P_{3}\) problem \((MWCVCP_{3})\) is required to find a subset C of vertices of the graph with minimum total weight, such that each path with length 2 has at least one vertex in C, and moreover, the induced subgraph G[C] is connected. This kind of problem has many applications concerning wireless sensor networks and ad hoc networks. When homogeneous sensors are deployed into a three-dimensional space instead of a plane, the mathematical model for the sensor network is a unit ball graph instead of a unit disk graph. In this paper, we propose a new concept called weak c-local and give the first polynomial time approximation scheme (PTAS) for \(MWCVCP_{3}\) in unit ball graphs when the weight is smooth and weak c-local.  相似文献   

9.
The anti-Ramsey number AR(GH) is defined to be the maximum number of colors in an edge coloring of G which doesn’t contain any rainbow subgraphs isomorphic to H. It is clear that there is an \(AR(K_{m,n},kK_2)\)-edge-coloring of \(K_{m,n}\) that doesn’t contain any rainbow \(kK_2\). In this paper, we show the uniqueness of this kind of \(AR(K_{m,n},kK_2)\)-edge-coloring of \(K_{m,n}\).  相似文献   

10.
Neighbor sum distinguishing index of 2-degenerate graphs   总被引:1,自引:1,他引:0  
We consider proper edge colorings of a graph G using colors in \(\{1,\ldots ,k\}\). Such a coloring is called neighbor sum distinguishing if for each pair of adjacent vertices u and v, the sum of the colors of the edges incident with u is different from the sum of the colors of the edges incident with v. The smallest value of k in such a coloring of G is denoted by \({\mathrm ndi}_{\Sigma }(G)\). In this paper we show that if G is a 2-degenerate graph without isolated edges, then \({\mathrm ndi}_{\Sigma }(G)\le \max \{\Delta (G)+2,7\}\).  相似文献   

11.
A total coloring of a graph G is an assignment of colors to the vertices and the edges of G such that every pair of adjacent/incident elements receive distinct colors. The total chromatic number of a graph G, denoted by \(\chi ''(G)\), is the minimum number of colors in a total coloring of G. The well-known total coloring conjecture (TCC) says that every graph with maximum degree \(\Delta \) admits a total coloring with at most \(\Delta + 2\) colors. A graph is 1-toroidal if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 1-toroidal graphs, and prove that the TCC holds for the 1-toroidal graphs with maximum degree at least 11 and some restrictions on the triangles. Consequently, if G is a 1-toroidal graph with maximum degree \(\Delta \) at least 11 and without adjacent triangles, then G admits a total coloring with at most \(\Delta + 2\) colors.  相似文献   

12.
For \(S\subseteq G\), let \(\kappa (S)\) denote the maximum number r of edge-disjoint trees \(T_1, T_2, \ldots , T_r\) in G such that \(V(T_i)\cap V(T_j)=S\) for any \(i,j\in \{1,2,\ldots ,r\}\) and \(i\ne j\). For every \(2\le k\le n\), the k-connectivity of G, denoted by \(\kappa _k(G)\), is defined as \(\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}\). Clearly, \(\kappa _2(G)\) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with \(\kappa _{3}=2\). Denote by \(\mathcal {H}\) the set of minimally 2-connected graphs with \(\kappa _{3}=2\). Let \(\mathcal {B}\subseteq \mathcal {H}\) and every graph in \(\mathcal {B}\) is either \(K_{2,3}\) or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that \(H\in \mathcal {H}\) if and only if \(H\in \mathcal {B}\) or H can be constructed from one or some graphs \(H_{1},\ldots ,H_{k}\) in \(\mathcal {B}\) (\(k\ge 1\)) by applying some operations recursively.  相似文献   

13.
A coloring c of a graph \(G=(V,E)\) is a b -coloring if for every color i there is a vertex, say w(i), of color i whose neighborhood intersects every other color class. The vertex w(i) is called a b-dominating vertex of color i. The b -chromatic number of a graph G, denoted by b(G), is the largest integer k such that G admits a b-coloring with k colors. Let m(G) be the largest integer m such that G has at least m vertices of degree at least \(m-1\). A graph G is tight if it has exactly m(G) vertices of degree \(m(G)-1\), and any other vertex has degree at most \(m(G)-2\). In this paper, we show that the b-chromatic number of tight graphs with girth at least 8 is at least \(m(G)-1\) and characterize the graphs G such that \(b(G)=m(G)\). Lin and Chang (2013) conjectured that the b-chromatic number of any graph in \(\mathcal {B}_{m}\) is m or \(m-1\) where \(\mathcal {B}_{m}\) is the class of tight bipartite graphs \((D,D{^\prime })\) of girth 6 such that D is the set of vertices of degree \(m-1\). We verify the conjecture of Lin and Chang for some subclass of \(\mathcal {B}_{m}\), and we give a lower bound for any graph in \(\mathcal {B}_{m}\).  相似文献   

14.
An adjacent vertex-distinguishing edge coloring of a graph is a proper edge coloring such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex-distinguishing edge chromatic number is the minimum number of colors required for an adjacent vertex-distinguishing edge coloring, denoted as \(\chi '_{as}(G)\). In this paper, we prove that for a connected graph G with maximum degree \(\Delta \ge 3\), \(\chi '_{as}(G)\le 3\Delta -1\), which proves the previous upper bound. We also prove that for a graph G with maximum degree \(\Delta \ge 458\) and minimum degree \(\delta \ge 8\sqrt{\Delta ln \Delta }\), \(\chi '_{as}(G)\le \Delta +1+5\sqrt{\Delta ln \Delta }\).  相似文献   

15.
Let F be an edge subset and \(F^{\prime }\) a subset of edges and vertices of a graph G. If \(G-F\) and \(G-F^{\prime }\) have no fractional perfect matchings, then F is a fractional matching preclusion (FMP) set and \(F^{\prime }\) is a fractional strong MP (FSMP) set of G. The FMP (FSMP) number of G is the minimum size of FMP (FSMP) sets of G. In this paper, the FMP number and the FSMP number of Petersen graph, complete graphs and twisted cubes are obtained, respectively.  相似文献   

16.
A complete graph is the graph in which every two vertices are adjacent. For a graph \(G=(V,E)\), the complete width of G is the minimum k such that there exist k independent sets \(\mathtt {N}_i\subseteq V\), \(1\le i\le k\), such that the graph \(G'\) obtained from G by adding some new edges between certain vertices inside the sets \(\mathtt {N}_i\), \(1\le i\le k\), is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most k or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on \(3K_2\)-free bipartite graphs and polynomially solvable on \(2K_2\)-free bipartite graphs and on \((2K_2,C_4)\)-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on \(\overline{3K_2}\)-free co-bipartite graphs and polynomially solvable on \(C_4\)-free co-bipartite graphs and on \((2K_2, C_4)\)-free graphs. We also give a characterization for k-probe complete graphs which implies that the complete width problem admits a kernel of at most \(2^k\) vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most \(2^k\) vertices. Finally we determine all graphs of small complete width \(k\le 3\).  相似文献   

17.
A total-[k]-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that \(f(u)\ne f(v)\), where \(uv\in E(G)\). By \(\chi ^{\prime \prime }_{\prod }(G)\), we denote the smallest value k in such a coloring of G. We conjecture that \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a \(K_4\)-minor free graph with \(\Delta (G)\ge 4\), then \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2\).  相似文献   

18.
Gyárfás conjectured that for a given forest F, there exists an integer function f(Fx) such that \(\chi (G)\le f(F,\omega (G))\) for each F-free graph G, where \(\omega (G)\) is the clique number of G. The broom B(mn) is the tree of order \(m+n\) obtained from identifying a vertex of degree 1 of the path \(P_m\) with the center of the star \(K_{1,n}\). In this note, we prove that every connected, triangle-free and B(mn)-free graph is \((m+n-2)\)-colorable as an extension of a result of Randerath and Schiermeyer and a result of Gyárfás, Szemeredi and Tuza. In addition, it is also shown that every connected, triangle-free, \(C_4\)-free and T-free graph is \((p-2)\)-colorable, where T is a tree of order \(p\ge 4\) and \(T\not \cong K_{1,3}\).  相似文献   

19.
A co-bipartite chain graph is a co-bipartite graph in which the neighborhoods of the vertices in each clique can be linearly ordered with respect to inclusion. It is known that the maximum cardinality cut problem (\({\textsc {MaxCut}}\)) is \({\textsc {NP}}{\text {-hard}}\) in co-bipartite graphs (Bodlaender and Jansen, Nordic J Comput 7(2000):14–31, 2000). We consider \({\textsc {MaxCut}}\) in co-bipartite chain graphs. We first consider the twin-free case and present an explicit solution. We then show that \({\textsc {MaxCut}}\) is polynomial time solvable in this graph class.  相似文献   

20.
A partition of the vertex set V(G) of a graph G into \(V(G)=V_1\cup V_2\cup \cdots \cup V_k\) is called a k-strong subcoloring if \(d(x,y)\ne 2\) in G for every \(x,y\in V_i\), \(1\le i \le k\) where d(xy) denotes the length of a shortest x-y path in G. The strong subchromatic number is defined as \(\chi _{sc}(G)=\text {min}\{ k:G \text { admits a }k\)-\(\text {strong subcoloring}\}\). In this paper, we explore the complexity status of the StrongSubcoloring problem: for a given graph G and a positive integer k, StrongSubcoloring is to decide whether G admits a k-strong subcoloring. We prove that StrongSubcoloring is NP-complete for subcubic bipartite graphs and the problem is polynomial time solvable for trees. In addition, we prove the following dichotomy results: (i) for the class of \(K_{1,r}\)-free split graphs, StrongSubcoloring is in P when \(r\le 3\) and NP-complete when \(r>3\) and (ii) for the class of H-free graphs, StrongSubcoloring is polynomial time solvable only if H is an induced subgraph of \(P_4\); otherwise the problem is NP-complete. Next, we consider a lower bound on the strong subchromatic number. A strong set is a set S of vertices of a graph G such that for every \(x,y\in S\), \(d(x,y)= 2\) in G and the cardinality of a maximum strong set in G is denoted by \(\alpha _{s}(G)\). Clearly, \(\alpha _{s}(G)\le \chi _{sc}(G)\). We consider the complexity status of the StrongSet problem: given a graph G and a positive integer k, StrongSet asks whether G contains a strong set of cardinality k. We prove that StrongSet is NP-complete for (i) bipartite graphs and (ii) \(K_{1,4}\)-free split graphs, and it is polynomial time solvable for (i) trees and (ii) \(P_4\)-free graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号