首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reciprocal degree distance of a simple connected graph \(G=(V_G, E_G)\) is defined as \(\bar{R}(G)=\sum _{u,v \in V_G}(\delta _G(u)+\delta _G(v))\frac{1}{d_G(u,v)}\), where \(\delta _G(u)\) is the vertex degree of \(u\), and \(d_G(u,v)\) is the distance between \(u\) and \(v\) in \(G\). The reciprocal degree distance is an additive weight version of the Harary index, which is defined as \(H(G)=\sum _{u,v \in V_G}\frac{1}{d_G(u,v)}\). In this paper, the extremal \(\bar{R}\)-values on several types of important graphs are considered. The graph with the maximum \(\bar{R}\)-value among all the simple connected graphs of diameter \(d\) is determined. Among the connected bipartite graphs of order \(n\), the graph with a given matching number (resp. vertex connectivity) having the maximum \(\bar{R}\)-value is characterized. Finally, sharp upper bounds on \(\bar{R}\)-value among all simple connected outerplanar (resp. planar) graphs are determined.  相似文献   

2.
A tree in an edge-colored graph is said to be rainbow if no two edges on the tree share the same color. An edge-coloring of \(G\) is called a 3-rainbow coloring if for any three vertices in \(G\), there exists a rainbow tree connecting them. The 3-rainbow index \(rx_3(G)\) of \(G\) is defined as the minimum number of colors that are needed in a 3-rainbow coloring of \(G\). This concept, introduced by Chartrand et al., can be viewed as a generalization of the rainbow connection. In this paper, we study the 3-rainbow index by using connected 3-way dominating sets and 3-dominating sets. We show that for every connected graph \(G\) on \(n\) vertices with minimum degree at least \(\delta \, (3\le \delta \le 5)\), \(rx_{3}(G)\le \frac{3n}{\delta +1}+4\), and the bound is tight up to an additive constant; whereas for every connected graph \(G\) on \(n\) vertices with minimum degree at least \(\delta \, (\delta \ge 3)\), we get that \(rx_{3}(G)\le \frac{\ln (\delta +1)}{\delta +1}(1+o_{\delta }(1))n+5\). In addition, we obtain some tight upper bounds of the 3-rainbow index for some special graph classes, including threshold graphs, chain graphs and interval graphs.  相似文献   

3.
Let \(G\) be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, \(\gamma _t(G)\). A set \(S\) of vertices in \(G\) is a disjunctive total dominating set of \(G\) if every vertex is adjacent to a vertex of \(S\) or has at least two vertices in \(S\) at distance \(2\) from it. The disjunctive total domination number, \(\gamma ^d_t(G)\), is the minimum cardinality of such a set. We observe that \(\gamma ^d_t(G) \le \gamma _t(G)\). We prove that if \(G\) is a connected graph of order \(n \ge 8\), then \(\gamma ^d_t(G) \le 2(n-1)/3\) and we characterize the extremal graphs. It is known that if \(G\) is a connected claw-free graph of order \(n\), then \(\gamma _t(G) \le 2n/3\) and this upper bound is tight for arbitrarily large \(n\). We show this upper bound can be improved significantly for the disjunctive total domination number. We show that if \(G\) is a connected claw-free graph of order \(n > 14\), then \(\gamma ^d_t(G) \le 4n/7\) and we characterize the graphs achieving equality in this bound.  相似文献   

4.
The Gutman index (also known as Schultz index of the second kind) of a graph \(G\) is defined as \(Gut(G)=\sum \nolimits _{u,v\in V(G)}d(u)d(v)d(u, v)\). A graph \(G\) is called a cactus if each block of \(G\) is either an edge or a cycle. Denote by \(\mathcal {C}(n, k)\) the set of connected cacti possessing \(n\) vertices and \(k\) cycles. In this paper, we give the first three smallest Gutman indices among graphs in \(\mathcal {C}(n, k)\), the corresponding extremal graphs are characterized as well.  相似文献   

5.
A \(k\)-connected (resp. \(k\)-edge connected) dominating set \(D\) of a connected graph \(G\) is a subset of \(V(G)\) such that \(G[D]\) is \(k\)-connected (resp. \(k\)-edge connected) and each \(v\in V(G)\backslash D\) has at least one neighbor in \(D\). The \(k\) -connected domination number (resp. \(k\) -edge connected domination number) of a graph \(G\) is the minimum size of a \(k\)-connected (resp. \(k\)-edge connected) dominating set of \(G\), and denoted by \(\gamma _k(G)\) (resp. \(\gamma '_k(G)\)). In this paper, we investigate the relation of independence number and 2-connected (resp. 2-edge-connected) domination number, and prove that for a graph \(G\), if it is \(2\)-edge connected, then \(\gamma '_2(G)\le 4\alpha (G)-1\), and it is \(2\)-connected, then \(\gamma _2(G)\le 6\alpha (G)-3\), where \(\alpha (G)\) is the independent number of \(G\).  相似文献   

6.
Let \(G=(V_G, E_G)\) be a simple connected graph. The multiplicatively weighted Harary index of \(G\) is defined as \(H_M(G)=\sum _{\{u,v\}\subseteq V_G}\delta _G(u)\delta _G(v)\frac{1}{d_G(u,v)},\) where \(\delta _G(u)\) is the vertex degree of \(u\) and \(d_G(u,v)\) is the distance between \(u\) and \(v\) in \(G.\) This novel invariant is in fact the modification of the Harary index in which the contributions of vertex pairs are weighted by the product of their degrees. Deng et al. (J Comb Optim 2014, doi: 10.1007/s10878-013-9698-5) determined the extremal values on \(H_M\) of graphs among \(n\)-vertex trees (resp. unicyclic graphs). In this paper, as a continuance of it, the monotonicity of \(H_M(G)\) under some graph transformations were studied. Using these nice mathematical properties, the extremal graphs among \(n\)-vertex trees with given graphic parameters, such as pendants, matching number, domination number, diameter, vertex bipartition, et al. are characterized, respectively. Some sharp upper bounds on the multiplicatively weighted Harary index of trees with given parameters are determined.  相似文献   

7.
A complete graph is the graph in which every two vertices are adjacent. For a graph \(G=(V,E)\), the complete width of G is the minimum k such that there exist k independent sets \(\mathtt {N}_i\subseteq V\), \(1\le i\le k\), such that the graph \(G'\) obtained from G by adding some new edges between certain vertices inside the sets \(\mathtt {N}_i\), \(1\le i\le k\), is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most k or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on \(3K_2\)-free bipartite graphs and polynomially solvable on \(2K_2\)-free bipartite graphs and on \((2K_2,C_4)\)-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on \(\overline{3K_2}\)-free co-bipartite graphs and polynomially solvable on \(C_4\)-free co-bipartite graphs and on \((2K_2, C_4)\)-free graphs. We also give a characterization for k-probe complete graphs which implies that the complete width problem admits a kernel of at most \(2^k\) vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most \(2^k\) vertices. Finally we determine all graphs of small complete width \(k\le 3\).  相似文献   

8.
A graph \(G\) with convex-\(QP\) stability number (or simply a convex-\(QP\) graph) is a graph for which the stability number is equal to the optimal value of a convex quadratic program, say \(P(G)\). There are polynomial-time procedures to recognize convex-\(QP\) graphs, except when the graph \(G\) is adverse or contains an adverse subgraph (that is, a non complete graph, without isolated vertices, such that the least eigenvalue of its adjacency matrix and the optimal value of \(P(G)\) are both integer and none of them changes when the neighborhood of any vertex of \(G\) is deleted). In this paper, from a characterization of convex-\(QP\) graphs based on star sets associated to the least eigenvalue of its adjacency matrix, a simplex-like algorithm for the recognition of convex-\(QP\) adverse graphs is introduced.  相似文献   

9.
Let \(G\) be a finite and simple graph with vertex set \(V(G)\). A signed total Roman dominating function (STRDF) on a graph \(G\) is a function \(f:V(G)\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{x\in N(v)}f(x)\ge 1\) for each vertex \(v\in V(G)\), where \(N(v)\) is the neighborhood of \(v\), and (ii) every vertex \(u\) for which \(f(u)=-1\) is adjacent to at least one vertex \(v\) for which \(f(v)=2\). The weight of an SRTDF \(f\) is \(\sum _{v\in V(G)}f(v)\). The signed total Roman domination number \(\gamma _{stR}(G)\) of \(G\) is the minimum weight of an STRDF on \(G\). In this paper we initiate the study of the signed total Roman domination number of graphs, and we present different bounds on \(\gamma _{stR}(G)\). In addition, we determine the signed total Roman domination number of some classes of graphs.  相似文献   

10.
Let \(G=(V,E)\) be a graph and \(\phi \) be a total \(k\)-coloring of \(G\) using the color set \(\{1,\ldots , k\}\). Let \(\sum _\phi (u)\) denote the sum of the color of the vertex \(u\) and the colors of all incident edges of \(u\). A \(k\)-neighbor sum distinguishing total coloring of \(G\) is a total \(k\)-coloring of \(G\) such that for each edge \(uv\in E(G)\), \(\sum _\phi (u)\ne \sum _\phi (v)\). By \(\chi ^{''}_{nsd}(G)\), we denote the smallest value \(k\) in such a coloring of \(G\). Pil?niak and Wo?niak first introduced this coloring and conjectured that \(\chi _{nsd}^{''}(G)\le \Delta (G)+3\) for any simple graph \(G\). In this paper, we prove that the conjecture holds for planar graphs without intersecting triangles with \(\Delta (G)\ge 7\). Moreover, we also show that \(\chi _{nsd}^{''}(G)\le \Delta (G)+2\) for planar graphs without intersecting triangles with \(\Delta (G) \ge 9\). Our approach is based on the Combinatorial Nullstellensatz and the discharging method.  相似文献   

11.
Given a graph \(G=(V, E)\), a \(P_2\)-packing \(\mathcal {P}\) is a collection of vertex disjoint copies of \(P_2\)s in \(G\) where a \(P_2\) is a simple path with three vertices and two edges. The Maximum \(P_2\)-Packing problem is to find a \(P_2\)-packing \(\mathcal {P}\) in the input graph \(G\) of maximum cardinality. This problem is NP-hard for cubic graphs. In this paper, we give a branch-and-reduce algorithm for the Maximum \(P_2\)-Packing problem in cubic graphs. We analyze the running time of the algorithm using measure-and-conquer and show that it runs in time \(O^{*}(1.4366^n)\) which is faster than previous known exact algorithms where \(n\) is the number of vertices in the input graph.  相似文献   

12.
Let \(G = (V;E)\) be a simple graph with vertex set \(V\) and edge set \(E\). A signed mixed Roman dominating function (SMRDF) of \(G\) is a function \(f: V\cup E\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{y\in N_m[x]}f(y)\ge 1\) for each \(x\in V\cup E\), where \(N_m[x]\) is the set, called mixed closed neighborhood of \(x\), consists of \(x\) and the elements of \(V\cup E\) adjacent or incident to \(x\) (ii) every element \(x\in V\cup E\) for which \(f(x) = -1\) is adjacent or incident to at least one element \(y\in V\cup E\) for which \(f(y) = 2\). The weight of a SMRDF \(f\) is \(\omega (f)=\sum _{x\in V\cup E}f(x)\). The signed mixed Roman domination number \(\gamma _{sR}^*(G)\) of \(G\) is the minimum weight of a SMRDF of \(G\). In this paper we initiate the study of the signed mixed Roman domination number and we present bounds for this parameter. In particular, we determine this parameter for some classes of graphs.  相似文献   

13.
We initiate the study of relaxed \(L(2,1)\)-labelings of graphs. Suppose \(G\) is a graph. Let \(u\) be a vertex of \(G\). A vertex \(v\) is called an \(i\)-neighbor of \(u\) if \(d_G(u,v)=i\). A \(1\)-neighbor of \(u\) is simply called a neighbor of \(u\). Let \(s\) and \(t\) be two nonnegative integers. Suppose \(f\) is an assignment of nonnegative integers to the vertices of \(G\). If the following three conditions are satisfied, then \(f\) is called an \((s,t)\)-relaxed \(L(2,1)\)-labeling of \(G\): (1) for any two adjacent vertices \(u\) and \(v\) of \(G, f(u)\not =f(v)\); (2) for any vertex \(u\) of \(G\), there are at most \(s\) neighbors of \(u\) receiving labels from \(\{f(u)-1,f(u)+1\}\); (3) for any vertex \(u\) of \(G\), the number of \(2\)-neighbors of \(u\) assigned the label \(f(u)\) is at most \(t\). The minimum span of \((s,t)\)-relaxed \(L(2,1)\)-labelings of \(G\) is called the \((s,t)\)-relaxed \(L(2,1)\)-labeling number of \(G\), denoted by \(\lambda ^{s,t}_{2,1}(G)\). It is clear that \(\lambda ^{0,0}_{2,1}(G)\) is the so called \(L(2,1)\)-labeling number of \(G\). \(\lambda ^{1,0}_{2,1}(G)\) is simply written as \(\widetilde{\lambda }(G)\). This paper discusses basic properties of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of graphs. For any two nonnegative integers \(s\) and \(t\), the exact values of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of paths, cycles and complete graphs are determined. Tight upper and lower bounds for \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of complete multipartite graphs and trees are given. The upper bounds for \((s,1)\)-relaxed \(L(2,1)\)-labeling number of general graphs are also investigated. We introduce a new graph parameter called the breaking path covering number of a graph. A breaking path \(P\) is a vertex sequence \(v_1,v_2,\ldots ,v_k\) in which each \(v_i\) is adjacent to at least one vertex of \(v_{i-1}\) and \(v_{i+1}\) for \(i=2,3,\ldots ,k-1\). A breaking path covering of \(G\) is a set of disjoint such vertex sequences that cover all vertices of \(G\). The breaking path covering number of \(G\), denoted by \(bpc(G)\), is the minimum number of breaking paths in a breaking path covering of \(G\). In this paper, it is proved that \(\widetilde{\lambda }(G)= n+bpc(G^{c})-2\) if \(bpc(G^{c})\ge 2\) and \(\widetilde{\lambda }(G)\le n-1\) if and only if \(bpc(G^{c})=1\). The breaking path covering number of a graph is proved to be computable in polynomial time. Thus, if a graph \(G\) is of diameter two, then \(\widetilde{\lambda }(G)\) can be determined in polynomial time. Several conjectures and problems on relaxed \(L(2,1)\)-labelings are also proposed.  相似文献   

14.
In this paper, we consider the connected \(k\)-Center (\(CkC\)) problem, which can be seen as the classic \(k\)-Center problem with the constraint of internal connectedness, i.e., two nodes in a cluster are required to be connected by an internal path in the same cluster. \(CkC\) was first introduced by Ge et al. (ACM Trans Knowl Discov Data 2:7, 2008), in which they showed the \(NP\)-completeness for this problem and claimed a polynomial time approximation algorithm for it. However, the running time of their algorithm might not be polynomial, as one key step of their algorithm involves the computation of an \(NP\)-hard problem. We first present a simple polynomial time greedy-based \(2\)-approximation algorithm for the relaxation of \(CkC\)—the \(CkC^*\). Further, we give a \(6\)-approximation algorithm for \(CkC\).  相似文献   

15.
For a graph \(G=(V,E)\), a dominating set is a set \(D\subseteq V\) such that every vertex \(v\in V\setminus D\) has a neighbor in \(D\). The minimum outer-connected dominating set (Min-Outer-Connected-Dom-Set) problem for a graph \(G\) is to find a dominating set \(D\) of \(G\) such that \(G[V\setminus D]\), the induced subgraph by \(G\) on \(V\setminus D\), is connected and the cardinality of \(D\) is minimized. In this paper, we consider the complexity of the Min-Outer-Connected-Dom-Set problem. In particular, we show that the decision version of the Min-Outer-Connected-Dom-Set problem is NP-complete for split graphs, a well known subclass of chordal graphs. We also consider the approximability of the Min-Outer-Connected-Dom-Set problem. We show that the Min-Outer-Connected-Dom-Set problem cannot be approximated within a factor of \((1-\varepsilon ) \ln |V|\) for any \(\varepsilon >0\), unless NP \(\subseteq \) DTIME(\(|V|^{\log \log |V|}\)). For sufficiently large values of \(\varDelta \), we show that for graphs with maximum degree \(\varDelta \), the Min-Outer-Connected-Dom-Set problem cannot be approximated within a factor of \(\ln \varDelta -C \ln \ln \varDelta \) for some constant \(C\), unless P \(=\) NP. On the positive side, we present a \(\ln (\varDelta +1)+1\)-factor approximation algorithm for the Min-Outer-Connected-Dom-Set problem for general graphs. We show that the Min-Outer-Connected-Dom-Set problem is APX-complete for graphs of maximum degree 4.  相似文献   

16.
The \(L(p, q)\)-labeling arises from the optimization problem of channel assignment in communication networks. For two non-negative integers \(p\) and \(q\), an \(L(p,q)\)-labeling \(c\) of a graph \(G\) is an assignment of non-negative integers to the vertices of \(G\) such that adjacent vertices are labelled using colors at least \(p\) apart, and vertices with distance two are labelled using colors at least \(q\) apart. In this paper we establish a connection between an \(L(p, q)\)-labeling and an integer tension of a graph, which extends a corresponding result for planar graphs. This connection provides us with an effective way to design an \(L(p, q)\)-labeling for non-planar graphs, in particular for graphs embedded on torus, by choosing a proper cycle basis consisting of facial cycles and some specified cycles of the embedded graph. As an application, we use this method to optimize the edge span for the Cartesian product of two cycles.  相似文献   

17.
To save energy and alleviate interference in a wireless sensor network, connected dominating set (CDS) has been proposed as the virtual backbone. Since nodes may fail due to accidental damage or energy depletion, it is desirable to construct a fault tolerant CDS, which can be modeled as a \(k\)-connected \(m\)-fold dominating set \(((k,m)\)-CDS for short): a subset of nodes \(C\subseteq V(G)\) is a \((k,m)\)-CDS of \(G\) if every node in \(V(G)\setminus C\) is adjacent with at least \(m\) nodes in \(C\) and the subgraph of \(G\) induced by \(C\) is \(k\)-connected.In this paper, we present an approximation algorithm for the minimum \((2,m)\)-CDS problem with \(m\ge 2\). Based on a \((1,m)\)-CDS, the algorithm greedily merges blocks until the connectivity is raised to two. The most difficult problem in the analysis is that the potential function used in the greedy algorithm is not submodular. By proving that an optimal solution has a specific decomposition, we managed to prove that the approximation ratio is \(\alpha +2(1+\ln \alpha )\), where \(\alpha \) is the approximation ratio for the minimum \((1,m)\)-CDS problem. This improves on previous approximation ratios for the minimum \((2,m)\)-CDS problem, both in general graphs and in unit disk graphs.  相似文献   

18.
In the domination game, two players, the Dominator and Staller, take turns adding vertices of a fixed graph to a set, at each turn increasing the number of vertices dominated by the set, until the final set \(A_*\) dominates the whole graph. The Dominator plays to minimise the size of the set \(A_*\) while the Staller plays to maximise it. A graph is \(D\)-trivial if when the Dominator plays first and both players play optimally, the set \(A_*\) is a minimum dominating set of the graph. A graph is \(S\)-trivial if the same is true when the Staller plays first. We consider the problem of characterising \(D\)-trivial and \(S\)-trivial graphs. We give complete characterisations of \(D\)-trivial forests and of \(S\)-trivial forests. We also show that \(2\)-connected \(D\)-trivial graphs cannot have large girth, and conjecture that the same holds without the connectivity condition.  相似文献   

19.
The \(k\)-distance total domination problem is to find a minimum vertex set \(D\) of a graph such that every vertex of the graph is within distance \(k\) from some vertex of \(D\) other than itself, where \(k\) is a fixed positive integer. In the present paper, by using a labeling method, we design an efficient algorithm for solving the \(k\)-distance total domination problem on block graphs, a superclass of trees.  相似文献   

20.
Let \(G=(V,E)\) be a simple graph without isolated vertices. A set \(S\) of vertices is a total dominating set of a graph \(G\) if every vertex of \(G\) is adjacent to some vertex in \(S\). A paired dominating set of \(G\) is a dominating set whose induced subgraph has a perfect matching. The minimum cardinality of a total dominating set (respectively, a paired dominating set) is the total domination number (respectively, the paired domination number). Hu and Xu (J Combin Optim 27(2):369–378, 2014) computed the exact values of total and paired domination numbers of Cartesian product \(C_n\square C_m\) for \(m=3,4\). Graph bundles generalize the notions of covering graphs and Cartesian products. In this paper, we generalize these results given in Hu and Xu (J Combin Optim 27(2):369–378, 2014) to graph bundle and compute the total domination number and the paired domination number of \(C_m\) bundles over a cycle \(C_n\) for \(m=3,4\). Moreover, we give the exact value for the total domination number of Cartesian product \(C_n\square C_5\) and some upper bounds of \(C_m\) bundles over a cycle \(C_n\) where \(m\ge 5\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号