首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In this paper linear time sequential and optimal parallel algorithms for testing pattern involvement for all length 4 permutations are described. This is an improvement as the previous best sequential algorithms, for most of these pattern require \(O(n\log n)\) time. Our parallel algorithms can be implemented in \(O(\log n)\) time with \(n/\log n\) processors on the CREW PRAM model, or alternatively in \(O(\log \log \log n)\) time with \(n/\log \log \log n\) processors on a CRCW PRAM PRAM model. Parallel algorithm can also be implemented in constant time with \(n\log ^3 n\) processors on a CRCW PRAM model. The previous best parallel algorithms were available for only some of these patterns and took \(O(\log n)\) time with n processors on the CREW PRAM model.  相似文献   

2.
The directed Steiner tree (DST) NP-hard problem asks, considering a directed weighted graph with n nodes and m arcs, a node r called root and a set of k nodes X called terminals, for a minimum cost directed tree rooted at r spanning X. The best known polynomial approximation ratio for DST is a \(O(k^\varepsilon )\)-approximation greedy algorithm. However, a much faster k-approximation, returning the shortest paths from r to X, is generally used in practice. We give two new algorithms : a fast k-approximation called Greedy\(_\text {FLAC}\) running in \(O(m \log (n)k + \min (m, nk)nk^2)\) and a \(O(\sqrt{k})\)-approximation called Greedy\(_\text {FLAC}^\triangleright \) running in \(O(nm + n^2 \log (n)k +n^2 k^3)\). We provide computational results to show that, Greedy\(_\text {FLAC}\) rivals in practice with the running time of the fast k-approximation and returns solution with smaller cost in practice.  相似文献   

3.
Given a vertex-weighted undirected connected graph \(G = (V, E, \ell , \rho )\), where each edge \(e \in E\) has a length \(\ell (e) > 0\) and each vertex \(v \in V\) has a weight \(\rho (v) > 0\), a subset \(T \subseteq V\) of vertices and a set S containing all the points on edges in a subset \(E' \subseteq E\) of edges, the generalized absolute 1-center problem (GA1CP), an extension of the classic vertex-weighted absolute 1-center problem (A1CP), asks to find a point from S such that the longest weighted shortest path distance in G from it to T is minimized. This paper presents a simple FPTAS for GA1CP by traversing the edges in \(E'\) using a positive real number as step size. The FPTAS takes \(O( |E| |V| + |V|^2 \log \log |V| + \frac{1}{\epsilon } |E'| |T| {\mathcal {R}})\) time, where \({\mathcal {R}}\) is an input parameter size of the problem instance, for any given \(\epsilon > 0\). For instances with a small input parameter size \({\mathcal {R}}\), applying the FPTAS with \(\epsilon = \Theta (1)\) to the classic vertex-weighted A1CP can produce a \((1 + \Theta (1))\)-approximation in at most O(|E| |V|) time when the distance matrix is known and \(O(|E| |V| + |V|^2 \log \log |V|)\) time when the distance matrix is unknown, which are smaller than Kariv and Hakimi’s \(O(|E| |V| \log |V|)\)-time algorithm and \(O(|E| |V| \log |V| + |V|^3)\)-time algorithm, respectively.  相似文献   

4.
For a given graph and an integer t, the MinMax 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t. It has been shown that the problem can be solved in polynomial time for \(t<n/4\), where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t. Let \(k=t-n/4\). We show that the problem is polynomial-time solvable when roughly \(k<\sqrt{n/32}\). When \(k\in o(n)\), we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in \(O({2}^{n/r}\cdot n^2)\) time for \(k<n/12\) and in \(O(n^2\cdot 2^{3n/4+k})\) time for \(n/12\le k< n/4\), where \(r=2+\lfloor (n/4-3k-2)/(2k+1) \rfloor \ge 2\).  相似文献   

5.
Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an \(O(mn+n^2 \log n)\) time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in \(O(m+n \log n)\) time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in \(O(m+n \log n)\) time.  相似文献   

6.
An \(m\times n\) matrix \(\mathsf {A}\) with column supports \(\{S_i\}\) is k-separable if the disjunctions \(\bigcup _{i \in \mathcal {K}} S_i\) are all distinct over all sets \(\mathcal {K}\) of cardinality k. While a simple counting bound shows that \(m > k \log _2 n/k\) rows are required for a separable matrix to exist, in fact it is necessary for m to be about a factor of k more than this. In this paper, we consider a weaker definition of ‘almost k-separability’, which requires that the disjunctions are ‘mostly distinct’. We show using a random construction that these matrices exist with \(m = O(k \log n)\) rows, which is optimal for \(k = O(n^{1-\beta })\). Further, by calculating explicit constants, we show how almost separable matrices give new bounds on the rate of nonadaptive group testing.  相似文献   

7.
Based on the well-known longest increasing subsequence problem and longest common increasing subsequence (LCIS) problem, we propose the longest commonly positioned increasing subsequences (LCPIS) problem. Let \(A=\langle a_1,a_2,\ldots ,a_n\rangle \) and \(B{=}\left\langle b_1,b_2,\ldots ,b_n\right\rangle \) be two input sequences. Let \({ Asub}=\left\langle a_{i_1},a_{i_2},\ldots ,a_{i_l}\right\rangle \) be a subsequence of A and \({ Bsub}=\left\langle b_{j_1},b_{j_2},\ldots ,b_{j_l}\right\rangle \) be a subsequence of B such that \(a_{i_k}\le a_{i_{k+1}}, b_{j_k}\le b_{j_{k+1}}(1\le k<l)\), and \(a_{i_k}\) and \(b_{j_k}\) (\(1\le k\le l\)) are commonly positioned (have the same index \(i_k=j_k\)) in A and B respectively but these two elements do not need to be equal. The LCPIS problem aims at finding a pair of subsequences Asub and \({ Bsub}\) as long as possible. When all the elements of the two input sequences are positive integers, this paper presents an algorithm with \(O(n\log n \log \log M)\) time to compute the LCPIS, where \(M={ min}\{{ max}_{1\le i\le n}a_i,{ max}_{1\le j\le n}b_j\}\). And we also show a dual relationship between the LCPIS problem and the LCIS problem.  相似文献   

8.
In this note, we consider a discrete fractional programming in light of a decision problem where limited number of indivisible resources are allocated to several heterogeneous projects to maximize the ratio of total profit to total cost. For each project, both profit and cost are solely determined by the amount of resources allocated to it. Although the problem can be reformulated as a linear program with \(O(m^2 n)\) variables and \(O(m^2 n^2)\) constraints, we further show that it can be efficiently solved by induction in \(O(m^3 n^2 \log mn)\) time. In application, this method leads to an \(O(m^3 n^2 \log mn)\) algorithm for assortment optimization problem under nested logit model with cardinality constraints (Feldman and Topaloglu, Oper Res 63: 812–822, 2015).  相似文献   

9.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

10.
A tree T in an edge-colored graph is called a proper tree if no two adjacent edges of T receive the same color. Let G be a connected graph of order n and k be an integer with \(2\le k \le n\). For \(S\subseteq V(G)\) and \(|S| \ge 2\), an S-tree is a tree containing the vertices of S in G. A set \(\{T_1,T_2,\ldots ,T_\ell \}\) of S-trees is called internally disjoint if \(E(T_i)\cap E(T_j)=\emptyset \) and \(V(T_i)\cap V(T_j)=S\) for \(1\le i\ne j\le \ell \). For a set S of k vertices of G, the maximum number of internally disjoint S-trees in G is denoted by \(\kappa (S)\). The k-connectivity \(\kappa _k(G)\) of G is defined by \(\kappa _k(G)=\min \{\kappa (S)\mid S\) is a k-subset of \(V(G)\}\). For a connected graph G of order n and for two integers k and \(\ell \) with \(2\le k\le n\) and \(1\le \ell \le \kappa _k(G)\), the \((k,\ell )\)-proper index \(px_{k,\ell }(G)\) of G is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of V(G), there exist \(\ell \) internally disjoint proper S-trees connecting them. In this paper, we show that for every pair of positive integers k and \(\ell \) with \(k \ge 3\) and \(\ell \le \kappa _k(K_{n,n})\), there exists a positive integer \(N_1=N_1(k,\ell )\) such that \(px_{k,\ell }(K_n) = 2\) for every integer \(n \ge N_1\), and there exists also a positive integer \(N_2=N_2(k,\ell )\) such that \(px_{k,\ell }(K_{m,n}) = 2\) for every integer \(n \ge N_2\) and \(m=O(n^r) (r \ge 1)\). In addition, we show that for every \(p \ge c\root k \of {\frac{\log _a n}{n}}\) (\(c \ge 5\)), \(px_{k,\ell }(G_{n,p})\le 2\) holds almost surely, where \(G_{n,p}\) is the Erd?s–Rényi random graph model.  相似文献   

11.
For graphs G and H, let \(G\rightarrow (H,H)\) signify that any red/blue edge coloring of G contains a monochromatic H as a subgraph. Denote \(\mathcal {H}(\Delta ,n)=\{H:|V(H)|=n,\Delta (H)\le \Delta \}\). For any \(\Delta \) and n, we say that G is partition universal for \(\mathcal {H}(\Delta ,n)\) if \(G\rightarrow (H,H)\) for every \(H\in \mathcal {H}(\Delta ,n)\). Let \(G_r(N,p)\) be the random spanning subgraph of the complete r-partite graph \(K_r(N)\) with N vertices in each part, in which each edge of \(K_r(N)\) appears with probability p independently and randomly. We prove that for fixed \(\Delta \ge 2\) there exist constants rB and C depending only on \(\Delta \) such that if \(N\ge Bn\) and \(p=C(\log N/N)^{1/\Delta }\), then asymptotically almost surely \(G_r(N,p)\) is partition universal for \(\mathcal {H}(\Delta ,n)\).  相似文献   

12.
A hamiltonian walk of a digraph is a closed spanning directed walk with minimum length in the digraph. The length of a hamiltonian walk in a digraph D is called the hamiltonian number of D, denoted by h(D). In Chang and Tong (J Comb Optim 25:694–701, 2013), Chang and Tong proved that for a strongly connected digraph D of order n, \(n\le h(D)\le \lfloor \frac{(n+1)^2}{4} \rfloor \), and characterized the strongly connected digraphs of order n with hamiltonian number \(\lfloor \frac{(n+1)^2}{4} \rfloor \). In the paper, we characterized the strongly connected digraphs of order n with hamiltonian number \(\lfloor \frac{(n+1)^2}{4} \rfloor -1\) and show that for any triple of integers n, k and t with \(n\ge 5\), \(n\ge k\ge 3\) and \(t\ge 0\), there is a class of nonisomorphic digraphs with order n and hamiltonian number \(n(n-k+1)-t\).  相似文献   

13.
We consider online optimization problems in which certain goods have to be acquired in order to provide a service or infrastructure. Classically, decisions for such problems are considered as final: one buys the goods. However, in many real world applications, there is a shift away from the idea of buying goods. Instead, leasing is often a more flexible and lucrative business model. Research has realized this shift and recently initiated the theoretical study of leasing models (Anthony and Gupta in Proceedings of the integer programming and combinatorial optimization: 12th International IPCO Conference, Ithaca, NY, USA, June 25–27, 2007; Meyerson in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23–25 Oct 2005, Pittsburgh, PA, USA, 2005; Nagarajan and Williamson in Discret Optim 10(4):361–370, 2013) We extend this line of work and suggest a more systematic study of leasing aspects for a class of online optimization problems. We provide two major technical results. We introduce the leasing variant of online set multicover and give an \(O\left( \log (mK)\log n\right) \)-competitive algorithm (with n, m, and K being the number of elements, sets, and leases, respectively). Our results also imply improvements for the non-leasing variant of online set cover. Moreover, we extend results for the leasing variant of online facility location. Nagarajan and Williamson (Discret Optim 10(4):361–370, 2013) gave an \(O\left( K\log n\right) \)-competitive algorithm for this problem (with n and K being the number of clients and leases, respectively). We remove the dependency on n (and, thereby, on time). In general, this leads to a bound of \(O\left( l_{\text {max}} \log l_{\text {max}} \right) \) (with the maximal lease length \(l_{\text {max}} \)). For many natural problem instances, the bound improves to \(O\left( K^2\right) \).  相似文献   

14.
A partition of the vertex set V(G) of a graph G into \(V(G)=V_1\cup V_2\cup \cdots \cup V_k\) is called a k-strong subcoloring if \(d(x,y)\ne 2\) in G for every \(x,y\in V_i\), \(1\le i \le k\) where d(xy) denotes the length of a shortest x-y path in G. The strong subchromatic number is defined as \(\chi _{sc}(G)=\text {min}\{ k:G \text { admits a }k\)-\(\text {strong subcoloring}\}\). In this paper, we explore the complexity status of the StrongSubcoloring problem: for a given graph G and a positive integer k, StrongSubcoloring is to decide whether G admits a k-strong subcoloring. We prove that StrongSubcoloring is NP-complete for subcubic bipartite graphs and the problem is polynomial time solvable for trees. In addition, we prove the following dichotomy results: (i) for the class of \(K_{1,r}\)-free split graphs, StrongSubcoloring is in P when \(r\le 3\) and NP-complete when \(r>3\) and (ii) for the class of H-free graphs, StrongSubcoloring is polynomial time solvable only if H is an induced subgraph of \(P_4\); otherwise the problem is NP-complete. Next, we consider a lower bound on the strong subchromatic number. A strong set is a set S of vertices of a graph G such that for every \(x,y\in S\), \(d(x,y)= 2\) in G and the cardinality of a maximum strong set in G is denoted by \(\alpha _{s}(G)\). Clearly, \(\alpha _{s}(G)\le \chi _{sc}(G)\). We consider the complexity status of the StrongSet problem: given a graph G and a positive integer k, StrongSet asks whether G contains a strong set of cardinality k. We prove that StrongSet is NP-complete for (i) bipartite graphs and (ii) \(K_{1,4}\)-free split graphs, and it is polynomial time solvable for (i) trees and (ii) \(P_4\)-free graphs.  相似文献   

15.
In a graph \(G=(V,E)\), a set \(D \subseteq V\) is said to be a dominating set of G if for every vertex \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\). A secure dominating set of the graph G is a dominating set D of G such that for every \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\) and \((D{\setminus }\{v\})\cup \{u\}\) is a dominating set of G. Given a graph G and a positive integer k, the secure domination problem is to decide whether G has a secure dominating set of cardinality at most k. The secure domination problem has been shown to be NP-complete for chordal graphs via split graphs and for bipartite graphs. In Liu et al. (in: Proceedings of 27th workshop on combinatorial mathematics and computation theory, 2010), it is asked to find a polynomial time algorithm for computing a minimum secure dominating set in a block graph. In this paper, we answer this by presenting a linear time algorithm to compute a minimum secure dominating set in block graphs. We then strengthen the known NP-completeness of the secure domination problem by showing that the secure domination problem is NP-complete for undirected path graphs and chordal bipartite graphs.  相似文献   

16.
In the p-Cluster Vertex Deletion problem, we are given a graph \(G=(V,E)\) and two parameters k and p, and the goal is to determine if there exists a subset X of at most k vertices such that the removal of X results in a graph consisting of exactly p disjoint maximal cliques. Let \(r=p/k\). In this paper, we design a branching algorithm with time complexity \(O(\alpha ^k+|V||E|)\), where \(\alpha \) depends on r and has a rough upper bound \(\min \{1.618^{1+r},2\}\). With a more precise analysis, we show that \(\alpha =1.28\cdot 3.57^{r}\) for \(r\le 0.219\); \(\alpha =(1-r)^{r-1}r^{-r}\) for \(0.219< r<1/2\); and \(\alpha =2\) for \(r\ge 1/2\), respectively. Our algorithm also works with the same time complexity for the variant that the number of clusters is at most p. Our result improves the previous best time complexity \(O^*(1.84^{p+k})\) and implies that for fixed p the problem can be solved as efficiently as Vertex Cover.  相似文献   

17.
In this paper we give improved approximation algorithms for some network design problems. In the bounded-diameter or shallow-light \(k\)-Steiner tree problem (SL\(k\)ST), we are given an undirected graph \(G=(V,E)\) with terminals \(T\subseteq V\) containing a root \(r\in T\), a cost function \(c:E\rightarrow \mathbb {R}^+\), a length function \(\ell :E\rightarrow \mathbb {R}^+\), a bound \(L>0\) and an integer \(k\ge 1\). The goal is to find a minimum \(c\)-cost \(r\)-rooted Steiner tree containing at least \(k\) terminals whose diameter under \(\ell \) metric is at most \(L\). The input to the buy-at-bulk \(k\)-Steiner tree problem (BB\(k\)ST) is similar: graph \(G=(V,E)\), terminals \(T\subseteq V\) containing a root \(r\in T\), cost and length functions \(c,\ell :E\rightarrow \mathbb {R}^+\), and an integer \(k\ge 1\). The goal is to find a minimum total cost \(r\)-rooted Steiner tree \(H\) containing at least \(k\) terminals, where the cost of each edge \(e\) is \(c(e)+\ell (e)\cdot f(e)\) where \(f(e)\) denotes the number of terminals whose path to root in \(H\) contains edge \(e\). We present a bicriteria \((O(\log ^2 n),O(\log n))\)-approximation for SL\(k\)ST: the algorithm finds a \(k\)-Steiner tree with cost at most \(O(\log ^2 n\cdot \text{ opt }^*)\) where \(\text{ opt }^*\) is the cost of an LP relaxation of the problem and diameter at most \(O(L\cdot \log n)\). This improves on the algorithm of Hajiaghayi et al. (2009) (APPROX’06/Algorithmica’09) which had ratio \((O(\log ^4 n), O(\log ^2 n))\). Using this, we obtain an \(O(\log ^3 n)\)-approximation for BB\(k\)ST, which improves upon the \(O(\log ^4 n)\)-approximation of Hajiaghayi et al. (2009). We also consider the problem of finding a minimum cost \(2\)-edge-connected subgraph with at least \(k\) vertices, which is introduced as the \((k,2)\)-subgraph problem in Lau et al. (2009) (STOC’07/SICOMP09). This generalizes some well-studied classical problems such as the \(k\)-MST and the minimum cost \(2\)-edge-connected subgraph problems. We give an \(O(\log n)\)-approximation algorithm for this problem which improves upon the \(O(\log ^2 n)\)-approximation algorithm of Lau et al. (2009).  相似文献   

18.
In this paper we show that there is a polynomial time algorithm for the strongly planar not-all-equal 3SAT problem. Also, we prove that a restricted version of planar not-all-equal 3SAT is \( \mathbf {NP} \)-complete and in consequence of this result, we show that for a given planar bipartite graph \(G\), deciding whether there is a vertex-labeling by gap from \(\{1,2\}\) such that the induced proper coloring is a proper vertex 2-coloring is \( \mathbf {NP} \)-complete.  相似文献   

19.
Consider a graph G. A subset of vertices, F, is called a vertex cover \(P_t\) (\(VCP_t\)) set if every path of order t contains at least one vertex in F. Finding a minimum \(VCP_t\) set in a graph is is NP-hard for any integer \(t\ge 2\) and is called the \(MVCP_3\) problem. In this paper, we study the parameterized algorithms for the \(MVCP_3\) problem when the underlying graph G is parameterized by the treewidth. Given an n-vertex graph together with its tree decomposition of width at most p, we present an algorithm running in time \(4^{p}\cdot n^{O(1)}\) for the \(MVCP_3\) problem. Moreover, we show that for the \(MVCP_3\) problem on planar graphs, there is a subexponential parameterized algorithm running in time \(2^{O(\sqrt{k})}\cdot n^{O(1)}\) where k is the size of the optimal solution.  相似文献   

20.
Given a directed arc-weighted graph G with n nodes, a root r and k terminals, the directed steiner tree problem (DST) consists in finding a minimum-weight tree rooted at r and spanning all the terminals. If this problem has several applications in multicast routing in packet switching networks, the modeling is not adapted anymore in networks based upon the circuit switching principle in which some nodes, called non diffusing nodes, are unable to duplicate packets. We define a more general problem, namely the directed steiner tree with a limited number of diffusing nodes (DSTLD), that enables us to model multicast in a network containing at most d diffusing nodes. We show that DSTLD is XP with respect to d, and use this result to build a \(\left\lceil \frac{k-1}{d} \right\rceil \)-approximation algorithm for DST that is XP in d. We deduce from that result a strong inapproximability property. In particular, we prove that, under the assumption that NP \(\not \subseteq \) ZTIME \([n^{\log ^{O(1)}n}]\), there is no polynomial-time approximation algorithm for DSTLD with ratio \(\varOmega \left( \frac{k}{d}\right) \). We finally give an evaluation of performances of an exact algorithm dedicated to the case \(d \le 3\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号