首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A co-bipartite chain graph is a co-bipartite graph in which the neighborhoods of the vertices in each clique can be linearly ordered with respect to inclusion. It is known that the maximum cardinality cut problem (\({\textsc {MaxCut}}\)) is \({\textsc {NP}}{\text {-hard}}\) in co-bipartite graphs (Bodlaender and Jansen, Nordic J Comput 7(2000):14–31, 2000). We consider \({\textsc {MaxCut}}\) in co-bipartite chain graphs. We first consider the twin-free case and present an explicit solution. We then show that \({\textsc {MaxCut}}\) is polynomial time solvable in this graph class.  相似文献   

2.
We investigate the question whether NE can be separated from the reduction closures of tally sets, sparse sets and NP. We show that (1) \(\mathrm{NE}\not\subseteq R^{\mathrm{NP}}_{n^{o(1)}-T}(\mathrm{TALLY})\); (2) \(\mathrm{NE}\not\subseteq R^{SN}_{m}(\mathrm{SPARSE})\); (3) \(\mathrm{NEXP}\not\subseteq \mathrm{P}^{\mathrm{NP}}_{n^{k}-T}/n^{k}\) for all k≥1; and (4) \(\mathrm{NE}\not\subseteq \mathrm{P}_{btt}(\mathrm{NP}\oplus\mathrm{SPARSE})\). Result (3) extends a previous result by Mocas to nonuniform reductions. We also investigate how different an NE-hard set is from an NP-set. We show that for any NP subset A of a many-one-hard set H for NE, there exists another NP subset A′ of H such that A? A and A′?A is not of sub-exponential density.  相似文献   

3.
The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. (Algorithmica 58:790–810 2010) introduce a branch-decomposition based algorithm design technique for NP-hard problems in planar graphs and give an algorithm (DPBF algorithm) which solves the planar CDS problem in \(O(2^{9.822\sqrt{n}}n+n^3)\) time and \(O(2^{8.11\sqrt{n}}n+n^3)\) time, with a conventional method and fast matrix multiplication in the dynamic programming step of the algorithm, respectively. We show that DPBF algorithm solves the planar CDS problem in \(O(2^{9.8\sqrt{n}}n+n^3)\) time with a conventional method and in \(O(2^{8.08\sqrt{n}}n+n^3)\) time with a fast matrix multiplication. For a graph \(G\), let \({\hbox {bw}}(G)\) be the branchwidth of \(G\) and \(\gamma _c(G)\) be the connected dominating number of \(G\). We prove \({\hbox {bw}}(G)\le 2\sqrt{10\gamma _c(G)}+32\). From this result, the planar CDS problem admits an \(O(2^{23.54\sqrt{\gamma _c(G)}}\gamma _c(G)+n^3)\) time fixed-parameter algorithm. We report computational study results on the practical performance of DPBF algorithm, which show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical analysis. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space.  相似文献   

4.
Let \(K_n\) be a complete graph drawn on the plane with every vertex incident to the infinite face. For any integers i and d, we define the (id)-Trinque Number of \(K_n\), denoted by \({\mathcal {T}}^d_{i}(K_n)\), as the smallest integer k such that there is an edge-covering of \(K_n\) by k “plane” hypergraphs of degree at most d and size of edge bounded by i. We compute this number for graphs (that is \(i=2\)) and gives some bounds for general hypergraphs.  相似文献   

5.
Because of its application in the field of security in wireless sensor networks, k-path vertex cover (\(\hbox {VCP}_k\)) has received a lot of attention in recent years. Given a graph \(G=(V,E)\), a vertex set \(C\subseteq V\) is a k-path vertex cover (\(\hbox {VCP}_k\)) of G if every path on k vertices has at least one vertex in C, and C is a connected k-path vertex cover of G (\(\hbox {CVCP}_k\)) if furthermore the subgraph of G induced by C is connected. A homogeneous wireless sensor network can be modeled as a unit disk graph. This paper presents a new PTAS for \(\hbox {MinCVCP}_k\) on unit disk graphs. Compared with previous PTAS given by Liu et al., our method not only simplifies the algorithm and reduces the time-complexity, but also simplifies the analysis by a large amount.  相似文献   

6.
An L(2, 1)-labeling for a graph \(G=(V,E)\) is a function f on V such that \(|f(u)-f(v)|\ge 2\) if u and v are adjacent and f(u) and f(v) are distinct if u and v are vertices of distance two. The L(2, 1)-labeling number, or the lambda number \(\lambda (G)\), for G is the minimum span over all L(2, 1)-labelings of G. When \(P_{m}\times C_{n}\) is the direct product of a path \(P_m\) and a cycle \(C_n\), Jha et al. (Discret Appl Math 145:317–325, 2005) computed the lambda number of \(P_{m}\times C_{n}\) for \(n\ge 3\) and \(m=4,5\). They also showed that when \(m\ge 6\) and \(n\ge 7\), \(\lambda (P_{m}\times C_{n})=6\) if and only if n is the multiple of 7 and conjectured that it is 7 if otherwise. They also showed that \(\lambda (C_{7i}\times C_{7j})=6\) for some ij. In this paper, we show that when \(m\ge 6\) and \(n\ge 3\), \(\lambda (P_m\times C_n)=7\) if and only if n is not a multiple of 7. Consequently the conjecture is proved. Here we also provide the conditions on m and n such that \(\lambda (C_m\times C_n)\le 7\).  相似文献   

7.
We consider the online matching problem, where n server-vertices lie in a metric space and n request-vertices that arrive over time each must immediately be permanently assigned to a server-vertex. We focus on the egalitarian bottleneck objective, where the goal is to minimize the maximum distance between any request and its server. It has been shown that while there are effective algorithms for the utilitarian objective (minimizing total cost) in the resource augmentation setting where the offline adversary has half the resources, these are not effective for the egalitarian objective. Thus, we propose a new Serve-or-Skip (SoS) bicriteria analysis model, where the online algorithm may reject or skip up to a specified number of requests, and propose two greedy algorithms: GriNN(t) and \({{\textsc {Grin}}^*(t)}\). We show that the SoS model of resource augmentation analysis can essentially simulate the doubled-server-capacity model, and then examine the performance of GriNN(t) and \({\textsc {Grin}^*(t)}\).  相似文献   

8.
Given a vertex-weighted undirected connected graph \(G = (V, E, \ell , \rho )\), where each edge \(e \in E\) has a length \(\ell (e) > 0\) and each vertex \(v \in V\) has a weight \(\rho (v) > 0\), a subset \(T \subseteq V\) of vertices and a set S containing all the points on edges in a subset \(E' \subseteq E\) of edges, the generalized absolute 1-center problem (GA1CP), an extension of the classic vertex-weighted absolute 1-center problem (A1CP), asks to find a point from S such that the longest weighted shortest path distance in G from it to T is minimized. This paper presents a simple FPTAS for GA1CP by traversing the edges in \(E'\) using a positive real number as step size. The FPTAS takes \(O( |E| |V| + |V|^2 \log \log |V| + \frac{1}{\epsilon } |E'| |T| {\mathcal {R}})\) time, where \({\mathcal {R}}\) is an input parameter size of the problem instance, for any given \(\epsilon > 0\). For instances with a small input parameter size \({\mathcal {R}}\), applying the FPTAS with \(\epsilon = \Theta (1)\) to the classic vertex-weighted A1CP can produce a \((1 + \Theta (1))\)-approximation in at most O(|E| |V|) time when the distance matrix is known and \(O(|E| |V| + |V|^2 \log \log |V|)\) time when the distance matrix is unknown, which are smaller than Kariv and Hakimi’s \(O(|E| |V| \log |V|)\)-time algorithm and \(O(|E| |V| \log |V| + |V|^3)\)-time algorithm, respectively.  相似文献   

9.
This paper studies approximation algorithm for the maximum weight budgeted connected set cover (MWBCSC) problem. Given an element set \(X\), a collection of sets \({\mathcal {S}}\subseteq 2^X\), a weight function \(w\) on \(X\), a cost function \(c\) on \({\mathcal {S}}\), a connected graph \(G_{\mathcal {S}}\) (called communication graph) on vertex set \({\mathcal {S}}\), and a budget \(L\), the MWBCSC problem is to select a subcollection \({\mathcal {S'}}\subseteq {\mathcal {S}}\) such that the cost \(c({\mathcal {S'}})=\sum _{S\in {\mathcal {S'}}}c(S)\le L\), the subgraph of \(G_{\mathcal {S}}\) induced by \({\mathcal {S'}}\) is connected, and the total weight of elements covered by \({\mathcal {S'}}\) (that is \(\sum _{x\in \bigcup _{S\in {\mathcal {S'}}}S}w(x)\)) is maximized. We present a polynomial time algorithm for this problem with a natural communication graph that has performance ratio \(O((\delta +1)\log n)\), where \(\delta \) is the maximum degree of graph \(G_{\mathcal {S}}\) and \(n\) is the number of sets in \({\mathcal {S}}\). In particular, if every set has cost at most \(L/2\), the performance ratio can be improved to \(O(\log n)\).  相似文献   

10.
A class \(\mathcal{G}\) of simple graphs is said to be girth-closed (odd-girth-closed) if for any positive integer g there exists a graph \(\mathrm {G} \in \mathcal{G}\) such that the girth (odd-girth) of \(\mathrm {G}\) is \(\ge g\). A girth-closed (odd-girth-closed) class \(\mathcal{G}\) of graphs is said to be pentagonal (odd-pentagonal) if there exists a positive integer \(g^*\) depending on \(\mathcal{G}\) such that any graph \(\mathrm {G} \in \mathcal{G}\) whose girth (odd-girth) is greater than \(g^*\) admits a homomorphism to the five cycle (i.e. is \(\mathrm {C}_{_{5}}\)-colourable). Although, the question “Is the class of simple 3-regular graphs pentagonal?” proposed by Ne?et?il (Taiwan J Math 3:381–423, 1999) is still a central open problem, Gebleh (Theorems and computations in circular colourings of graphs, 2007) has shown that there exists an odd-girth-closed subclass of simple 3-regular graphs which is not odd-pentagonal. In this article, motivated by the conjecture that the class of generalized Petersen graphs is odd-pentagonal, we show that finding the odd girth of generalized Petersen graphs can be transformed to an integer programming problem, and using the combinatorial and number theoretic properties of this problem, we explicitly compute the odd girth of such graphs, showing that the class is odd-girth-closed. Also, we obtain upper and lower bounds for the circular chromatic number of these graphs, and as a consequence, we show that the subclass containing generalized Petersen graphs \(\mathrm {Pet}(n,k)\) for which either k is even, n is odd and \(n\mathop {\equiv }\limits ^{k-1}\pm 2\) or both n and k are odd and \(n\ge 5k\) is odd-pentagonal. This in particular shows the existence of nontrivial odd-pentagonal subclasses of 3-regular simple graphs.  相似文献   

11.
For \(S\subseteq G\), let \(\kappa (S)\) denote the maximum number r of edge-disjoint trees \(T_1, T_2, \ldots , T_r\) in G such that \(V(T_i)\cap V(T_j)=S\) for any \(i,j\in \{1,2,\ldots ,r\}\) and \(i\ne j\). For every \(2\le k\le n\), the k-connectivity of G, denoted by \(\kappa _k(G)\), is defined as \(\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}\). Clearly, \(\kappa _2(G)\) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with \(\kappa _{3}=2\). Denote by \(\mathcal {H}\) the set of minimally 2-connected graphs with \(\kappa _{3}=2\). Let \(\mathcal {B}\subseteq \mathcal {H}\) and every graph in \(\mathcal {B}\) is either \(K_{2,3}\) or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that \(H\in \mathcal {H}\) if and only if \(H\in \mathcal {B}\) or H can be constructed from one or some graphs \(H_{1},\ldots ,H_{k}\) in \(\mathcal {B}\) (\(k\ge 1\)) by applying some operations recursively.  相似文献   

12.
Let \(G=(V,\, E)\) be a given directed graph in which every edge e is associated with two nonnegative costs: a weight w(e) and a length l(e). For a pair of specified distinct vertices \(s,\, t\in V\), the k-(edge) disjoint constrained shortest path (kCSP) problem is to compute k (edge) disjoint paths between s and t, such that the total length of the paths is minimized and the weight is bounded by a given weight budget \(W\in \mathbb {R}_{0}^{+}\). The problem is known to be \({\mathcal {NP}}\)-hard, even when \(k=1\) (Garey and Johnson in Computers and intractability, 1979). Approximation algorithms with bifactor ratio \(\left( 1\,+\,\frac{1}{r},\, r\left( 1\,+\,\frac{2(\log r\,+\,1)}{r}\right) (1\,+\,\epsilon )\right) \) and \((1\,+\,\frac{1}{r},\,1\,+\,r)\) have been developed for \(k=2\) in Orda and Sprintson (IEEE INFOCOM, pp. 727–738, 2004) and Chao and Hong (IEICE Trans Inf Syst 90(2):465–472, 2007), respectively. For general k, an approximation algorithm with ratio \((1,\, O(\ln n))\) has been developed for a weaker version of kCSP, the k bi-constraint path problem which is to compute k disjoint st-paths satisfying a given length constraint and a weight constraint simultaneously (Guo et al. in COCOON, pp. 325–336, 2013). This paper first gives an approximation algorithm with bifactor ratio \((2,\,2)\) for kCSP using the LP-rounding technique. The algorithm is then improved by adopting a more sophisticated method to round edges. It is shown that for any solution output by the improved algorithm, there exists a real number \(0\le \alpha \le 2\) such that the weight and the length of the solution are bounded by \(\alpha \) times and \(2-\alpha \) times of that of an optimum solution, respectively. The key observation of the ratio proof is to show that the fractional edges, in a basic solution against the proposed linear relaxation of kCSP, exactly compose a graph in which the degree of every vertex is exactly two. At last, by a novel enhancement of the technique in Guo et al. (COCOON, pp. 325–336, 2013), the approximation ratio is further improved to \((1,\,\ln n)\).  相似文献   

13.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

14.
The anti-Ramsey number AR(GH) is defined to be the maximum number of colors in an edge coloring of G which doesn’t contain any rainbow subgraphs isomorphic to H. It is clear that there is an \(AR(K_{m,n},kK_2)\)-edge-coloring of \(K_{m,n}\) that doesn’t contain any rainbow \(kK_2\). In this paper, we show the uniqueness of this kind of \(AR(K_{m,n},kK_2)\)-edge-coloring of \(K_{m,n}\).  相似文献   

15.
Link scheduling is a fundamental problem in wireless ad hoc and sensor networks. In this paper, we focus on the shortest link scheduling (SLS) under Signal-to-Interference-plus-Noise-Ratio and hypergraph models, and propose an approximation algorithm \(SLS_{pc}\) (A link scheduling algorithm with oblivious power assignment for the shortest link scheduling) with oblivious power assignment for better performance than GOW* proposed by Blough et al. [IEEE/ACM Trans Netw 18(6):1701–1712, 2010]. For the average scheduling length of \(SLS_{pc}\) is 1 / m of GOW*, where \(m=\lfloor \varDelta _{max}\cdot p \rfloor \) is the expected number of the links in the set V returned by the algorithm HyperMaxLS (Maximal links schedule under hypergraph model) and \(0<p<1\) is the constant. In the worst, ideal and average cases, the ratios of time complexity of our algorithm \(SLS_{pc}\) to that of GOW* are \(O(\varDelta _{max}/\overline{k})\), \(O(1/(\overline{k}\cdot \varDelta _{max}))\) and \(O(\varDelta _{max}/(\overline{k}\cdot m))\), respectively. Where \(\overline{k}\) (\(1<\overline{k}<\varDelta _{max}\)) is a constant called the SNR diversity of an instance G.  相似文献   

16.
A 2-distance k-coloring of a graph G is a proper k-coloring such that any two vertices at distance two get different colors. \(\chi _{2}(G)\)=min{k|G has a 2-distance k-coloring}. Wegner conjectured that for each planar graph G with maximum degree \(\Delta \), \(\chi _2(G) \le 7\) if \(\Delta \le 3\), \(\chi _2(G) \le \Delta +5\) if \(4\le \Delta \le 7\) and \(\chi _2(G) \le \lfloor \frac{3\Delta }{2}\rfloor +1\) if \(\Delta \ge 8\). In this paper, we prove that: (1) If G is a planar graph with maximum degree \(\Delta \le 5\), then \(\chi _{2}(G)\le 20\); (2) If G is a planar graph with maximum degree \(\Delta \ge 6\), then \(\chi _{2}(G)\le 5\Delta -7\).  相似文献   

17.
The total domination subdivision number \(\mathrm{sd}_{\gamma _{t}}(G)\) of a graph G is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that \(\mathrm{sd}_{\gamma_{t}}(G)\leq \lfloor\frac{2n}{3}\rfloor\) for any simple connected graph G of order n≥3 other than K 4. We also determine all simple connected graphs G with \(\mathrm{sd}_{\gamma_{t}}(G)=\lfloor\frac{2n}{3}\rfloor\).  相似文献   

18.
Based on the well-known longest increasing subsequence problem and longest common increasing subsequence (LCIS) problem, we propose the longest commonly positioned increasing subsequences (LCPIS) problem. Let \(A=\langle a_1,a_2,\ldots ,a_n\rangle \) and \(B{=}\left\langle b_1,b_2,\ldots ,b_n\right\rangle \) be two input sequences. Let \({ Asub}=\left\langle a_{i_1},a_{i_2},\ldots ,a_{i_l}\right\rangle \) be a subsequence of A and \({ Bsub}=\left\langle b_{j_1},b_{j_2},\ldots ,b_{j_l}\right\rangle \) be a subsequence of B such that \(a_{i_k}\le a_{i_{k+1}}, b_{j_k}\le b_{j_{k+1}}(1\le k<l)\), and \(a_{i_k}\) and \(b_{j_k}\) (\(1\le k\le l\)) are commonly positioned (have the same index \(i_k=j_k\)) in A and B respectively but these two elements do not need to be equal. The LCPIS problem aims at finding a pair of subsequences Asub and \({ Bsub}\) as long as possible. When all the elements of the two input sequences are positive integers, this paper presents an algorithm with \(O(n\log n \log \log M)\) time to compute the LCPIS, where \(M={ min}\{{ max}_{1\le i\le n}a_i,{ max}_{1\le j\le n}b_j\}\). And we also show a dual relationship between the LCPIS problem and the LCIS problem.  相似文献   

19.
We consider the bus evacuation problem. Given a positive integer B, a bipartite graph G with parts S and \(T \cup \{r\}\) in a metric space and functions \(l_i :S \rightarrow {\mathbb {Z}}_+\) and \({u_j :T \rightarrow \mathbb {Z}_+ \cup \{\infty \}}\), one wishes to find a set of B walks in G. Every walk in B should start at r and finish in T and r must be visited only once. Also, among all walks, each vertex i of S must be visited at least \(l_i\) times and each vertex j of T must be visited at most \(u_j\) times. The objective is to find a solution that minimizes the length of the longest walk. This problem arises in emergency planning situations where the walks correspond to the routes of B buses that must transport each group of people in S to a shelter in T, and the objective is to evacuate the entire population in the minimum amount of time. In this paper, we prove that approximating this problem by less than a constant is \(\text{ NP }\)-hard and present a 10.2-approximation algorithm. Further, for the uncapacitated BEP, in which \(u_j\) is infinity for each j, we give a 4.2-approximation algorithm.  相似文献   

20.
Consider a graph G. A subset of vertices, F, is called a vertex cover \(P_t\) (\(VCP_t\)) set if every path of order t contains at least one vertex in F. Finding a minimum \(VCP_t\) set in a graph is is NP-hard for any integer \(t\ge 2\) and is called the \(MVCP_3\) problem. In this paper, we study the parameterized algorithms for the \(MVCP_3\) problem when the underlying graph G is parameterized by the treewidth. Given an n-vertex graph together with its tree decomposition of width at most p, we present an algorithm running in time \(4^{p}\cdot n^{O(1)}\) for the \(MVCP_3\) problem. Moreover, we show that for the \(MVCP_3\) problem on planar graphs, there is a subexponential parameterized algorithm running in time \(2^{O(\sqrt{k})}\cdot n^{O(1)}\) where k is the size of the optimal solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号