首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppose that each edge e of an undirected graph G is associated with three nonnegative integers \(\mathsf{cost}(e)\), \(\mathsf{vul}(e)\) and \(\mathsf{cap}(e)\), called the cost, vulnerability and capacity of e, respectively. Then, we consider the problem of finding \(k\) paths in G between two prescribed vertices with the minimum total cost; each edge e can be shared without any cost by at most \(\mathsf{vul}(e)\) paths, and can be shared by more than \(\mathsf{vul}(e)\) paths if we pay \(\mathsf{cost}(e)\), but cannot be shared by more than \(\mathsf{cap}(e)\) paths even if we pay the cost for e. This problem generalizes the disjoint path problem, the minimum shared edges problem and the minimum edge cost flow problem for undirected graphs, and it is known to be NP-hard. In this paper, we study the problem from the viewpoint of specific graph classes, and give three results. We first show that the problem is NP-hard even for bipartite outerplanar graphs, 2-trees, graphs with pathwidth two, complete bipartite graphs, and complete graphs. We then give a pseudo-polynomial-time algorithm for bounded treewidth graphs. Finally, we give a fixed-parameter algorithm for chordal graphs when parameterized by the number \(k\) of required paths.  相似文献   

2.
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (\({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\)). We prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {NP}\)-hard on planar bipartite graphs of maximum degree 4. We also prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {APX}\)-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\). Finally, when \(k=1\), we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators.  相似文献   

3.
4.
An edge colored graph is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number, rc-number for short, of a graph \({\varGamma }\), is the smallest number of colors that are needed in order to make \({\varGamma }\) rainbow connected. In this paper, we give a method to bound the rc-numbers of graphs with certain structural properties. Using this method, we investigate the rc-numbers of Cayley graphs, especially, those defined on abelian groups and on dihedral groups.  相似文献   

5.
A complete graph is the graph in which every two vertices are adjacent. For a graph \(G=(V,E)\), the complete width of G is the minimum k such that there exist k independent sets \(\mathtt {N}_i\subseteq V\), \(1\le i\le k\), such that the graph \(G'\) obtained from G by adding some new edges between certain vertices inside the sets \(\mathtt {N}_i\), \(1\le i\le k\), is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most k or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on \(3K_2\)-free bipartite graphs and polynomially solvable on \(2K_2\)-free bipartite graphs and on \((2K_2,C_4)\)-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on \(\overline{3K_2}\)-free co-bipartite graphs and polynomially solvable on \(C_4\)-free co-bipartite graphs and on \((2K_2, C_4)\)-free graphs. We also give a characterization for k-probe complete graphs which implies that the complete width problem admits a kernel of at most \(2^k\) vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most \(2^k\) vertices. Finally we determine all graphs of small complete width \(k\le 3\).  相似文献   

6.
A graph is locally irregular if the neighbors of every vertex v have degrees distinct from the degree of v. A locally irregular edge-coloring of a graph G is an (improper) edge-coloring such that the graph induced on the edges of any color class is locally irregular. It is conjectured that three colors suffice for a locally irregular edge-coloring. In the paper, we develop a method using which we prove four colors are enough for a locally irregular edge-coloring of any subcubic graph admiting such a coloring. We believe that our method can be further extended to prove the tight bound of three colors for such graphs. Furthermore, using a combination of existing results, we present an improvement of the bounds for bipartite graphs and general graphs, setting the best upper bounds to 7 and 220, respectively.  相似文献   

7.
A graph \(G=(V,E)\) with even number vertices is called Pfaffian if it has a Pfaffian orientation, namely it admits an orientation such that the number of edges of any M-alternating cycle which have the same direction as the traversal direction is odd for some perfect matching M of the graph G. In this paper, we obtain a necessary and sufficient condition of Pfaffian graphs in a type of bipartite graphs. Then, we design an \(O(|E(G)|^2)\) algorithm for recognizing Pfaffian graphs in this class and constructs a Pfaffian orientation if the graph is Pfaffian. The results improve and generalize some known results.  相似文献   

8.
A simple connected graph G with 2n vertices is said to be k-extendable for an integer k with \(0<k<n\) if G contains a perfect matching and every matching of cardinality k in G is a subset of some perfect matching. Lakhal and Litzler (Inf Process Lett 65(1):11–16, 1998) discovered a polynomial algorithm that decides whether a bipartite graph is k-extendable. For general graphs, however, it has been an open problem whether there exists a polynomial algorithm. The new result presented in this paper is that the extendability problem is co-NP-complete.  相似文献   

9.
We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of k, we consider properties of \(D_k(G)\), the graph consisting of a node for each dominating set of size at most k and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that \(D_{\varGamma (G)+1}(G)\) is not necessarily connected, for \(\varGamma (G)\) the maximum cardinality of a minimal dominating set in G. The result holds even when graphs are constrained to be planar, of bounded tree-width, or b-partite for \(b \ge 3\). Moreover, we construct an infinite family of graphs such that \(D_{\gamma (G)+1}(G)\) has exponential diameter, for \(\gamma (G)\) the minimum size of a dominating set. On the positive side, we show that \(D_{n-\mu }(G)\) is connected and of linear diameter for any graph G on n vertices with a matching of size at least \(\mu +1\).  相似文献   

10.
An edge-coloured path is rainbow if its edges have distinct colours. An edge-coloured connected graph is said to be rainbow connected if any two vertices are connected by a rainbow path, and strongly rainbow connected if any two vertices are connected by a rainbow geodesic. The (strong) rainbow connection number of a connected graph is the minimum number of colours needed to make the graph (strongly) rainbow connected. These two graph parameters were introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). As an extension, Krivelevich and Yuster proposed the concept of rainbow vertex-connection. The topic of rainbow connection in graphs drew much attention and various similar parameters were introduced, mostly dealing with undirected graphs. Dorbec, Schiermeyer, Sidorowicz and Sopena extended the concept of the rainbow connection to digraphs. In this paper, we consider the (strong) rainbow vertex-connection number of digraphs. Results on the (strong) rainbow vertex-connection number of biorientations of graphs, cycle digraphs, circulant digraphs and tournaments are presented.  相似文献   

11.
Let G be a connected graph of order n. The long-standing open and close problems in distance graph theory are: what is the Wiener index W(G) or average distance \(\mu (G)\) among all graphs of order n with diameter d (radius r)? There are very few number of articles where were worked on the relationship between radius or diameter and Wiener index. In this paper, we give an upper bound on Wiener index of trees and graphs in terms of number of vertices n, radius r, and characterize the extremal graphs. Moreover, from this result we give an upper bound on \(\mu (G)\) in terms of order and independence number of graph G. Also we present another upper bound on Wiener index of graphs in terms of number of vertices n, radius r and maximum degree \(\Delta \), and characterize the extremal graphs.  相似文献   

12.
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let \(i_k = i_k(G)\) be the number of independent sets of cardinality k of G. The independence polynomial \(I(G, x)=\sum _{k\geqslant 0}i_k(G)x^k\) defined first by Gutman and Harary has been the focus of considerable research recently, whereas \(i(G)=I(G, 1)\) is called the Merrifield–Simmons index of G. In this paper, we first proved that among all trees of order n,  the kth coefficient \(i_k\) is smallest when the tree is a path, and is largest for star. Moreover, the graph among all trees of order n with diameter at least d whose all coefficients of I(Gx) are largest is identified. Then we identify the graphs among the n-vertex unicyclic graphs (resp. n-vertex connected graphs with clique number \(\omega \)) which simultaneously minimize all coefficients of I(Gx), whereas the opposite problems of simultaneously maximizing all coefficients of I(Gx) among these two classes of graphs are also solved respectively. At last we characterize the graph among all the n-vertex connected graph with chromatic number \(\chi \) (resp. vertex connectivity \(\kappa \)) which simultaneously minimize all coefficients of I(Gx). Our results may deduce some known results on Merrifield–Simmons index of graphs.  相似文献   

13.
In a graph \(G=(V,E)\), a set \(D \subseteq V\) is said to be a dominating set of G if for every vertex \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\). A secure dominating set of the graph G is a dominating set D of G such that for every \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\) and \((D{\setminus }\{v\})\cup \{u\}\) is a dominating set of G. Given a graph G and a positive integer k, the secure domination problem is to decide whether G has a secure dominating set of cardinality at most k. The secure domination problem has been shown to be NP-complete for chordal graphs via split graphs and for bipartite graphs. In Liu et al. (in: Proceedings of 27th workshop on combinatorial mathematics and computation theory, 2010), it is asked to find a polynomial time algorithm for computing a minimum secure dominating set in a block graph. In this paper, we answer this by presenting a linear time algorithm to compute a minimum secure dominating set in block graphs. We then strengthen the known NP-completeness of the secure domination problem by showing that the secure domination problem is NP-complete for undirected path graphs and chordal bipartite graphs.  相似文献   

14.
Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move removes two pebbles from some vertex and places one pebble on an adjacent vertex. The pebbling number of a graph G is the smallest integer k such that for each vertex v and each configuration of k pebbles on G there is a sequence of pebbling moves that places at least one pebble on v. First, we improve on results of Hurlbert, who introduced a linear optimization technique for graph pebbling. In particular, we use a different set of weight functions, based on graphs more general than trees. We apply this new idea to some graphs from Hurlbert’s paper to give improved bounds on their pebbling numbers. Second, we investigate the structure of Class 0 graphs with few edges. We show that every n-vertex Class 0 graph has at least \(\frac{5}{3}n - \frac{11}{3}\) edges. This disproves a conjecture of Blasiak et al. For diameter 2 graphs, we strengthen this lower bound to \(2n - 5\), which is best possible. Further, we characterize the graphs where the bound holds with equality and extend the argument to obtain an identical bound for diameter 2 graphs with no cut-vertex.  相似文献   

15.
The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is known for relatively few classes of graphs, compared to other topological invariants, e.g., genus and crossing number. For the complete bipartite graphs, Beineke et al. (Proc Camb Philos Soc 60:1–5, 1964) gave the answer for most graphs in this family in 1964. In this paper, we derive formulas and bounds for the thickness of some complete k-partite graphs. And some properties for the thickness for the join of two graphs are also obtained.  相似文献   

16.
A coloring c of a graph \(G=(V,E)\) is a b -coloring if for every color i there is a vertex, say w(i), of color i whose neighborhood intersects every other color class. The vertex w(i) is called a b-dominating vertex of color i. The b -chromatic number of a graph G, denoted by b(G), is the largest integer k such that G admits a b-coloring with k colors. Let m(G) be the largest integer m such that G has at least m vertices of degree at least \(m-1\). A graph G is tight if it has exactly m(G) vertices of degree \(m(G)-1\), and any other vertex has degree at most \(m(G)-2\). In this paper, we show that the b-chromatic number of tight graphs with girth at least 8 is at least \(m(G)-1\) and characterize the graphs G such that \(b(G)=m(G)\). Lin and Chang (2013) conjectured that the b-chromatic number of any graph in \(\mathcal {B}_{m}\) is m or \(m-1\) where \(\mathcal {B}_{m}\) is the class of tight bipartite graphs \((D,D{^\prime })\) of girth 6 such that D is the set of vertices of degree \(m-1\). We verify the conjecture of Lin and Chang for some subclass of \(\mathcal {B}_{m}\), and we give a lower bound for any graph in \(\mathcal {B}_{m}\).  相似文献   

17.
For a connected graph \(G = \left( V,E\right) \), a set \(S\subseteq E(G)\) is called a total edge-to-vertex monophonic set of a connected graph G if the subgraph induced by S has no isolated edges. The total edge-to-vertex monophonic number \(m_{tev}(G)\) of G is the minimum cardinality of its total edge-to-vertex monophonic set of G. The total edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size \(q \ge 3 \) with total edge-to-vertex monophonic number q is characterized. It is shown that for positive integers \(r_{m},d_{m}\) and \(l\ge 4\) with \(r_{m}< d_{m} \le 2 r_{m}\), there exists a connected graph G with \(\textit{rad}_ {m} G = r_{m}\), \(\textit{diam}_ {m} G = d_{m}\) and \(m_{tev}(G) = l\) and also shown that for every integers a and b with \(2 \le a \le b\), there exists a connected graph G such that \( m_{ev}\left( G\right) = b\) and \(m_{tev}(G) = a + b\). A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of S, denoted by \(f_{tev}(S)\) is the cardinality of a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of G, denoted by \(f_{tev}(G) = \textit{min}\{f_{tev}(S)\}\), where the minimum is taken over all total edge-to-vertex monophonic set S in G. The forcing total edge-to-vertex monophonic number of certain classes of graphs are determined and some of its general properties are studied. It is shown that for every integers a and b with \(0 \le a \le b\) and \(b \ge 2\), there exists a connected graph G such that \(f_{tev}(G) = a\) and \( m _{tev}(G) = b\), where \( f _{tev}(G)\) is the forcing total edge-to-vertex monophonic number of G.  相似文献   

18.
We investigate special cases of the quadratic minimum spanning tree problem (QMSTP) on a graph \(G=(V,E)\) that can be solved as a linear minimum spanning tree problem. We give a characterization of such problems when G is a complete graph, which is the standard case in the QMSTP literature. We extend our characterization to a larger class of graphs that include complete bipartite graphs and cactuses, among others. Our characterization can be verified in \(O(|E|^2)\) time. In the case of complete graphs and when the cost matrix is given in factored form, we show that our characterization can be verified in O(|E|) time. Related open problems are also indicated.  相似文献   

19.
The total domination subdivision number \(\mathrm{sd}_{\gamma _{t}}(G)\) of a graph G is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that \(\mathrm{sd}_{\gamma_{t}}(G)\leq \lfloor\frac{2n}{3}\rfloor\) for any simple connected graph G of order n≥3 other than K 4. We also determine all simple connected graphs G with \(\mathrm{sd}_{\gamma_{t}}(G)=\lfloor\frac{2n}{3}\rfloor\).  相似文献   

20.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号