首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. (Algorithmica 58:790–810 2010) introduce a branch-decomposition based algorithm design technique for NP-hard problems in planar graphs and give an algorithm (DPBF algorithm) which solves the planar CDS problem in \(O(2^{9.822\sqrt{n}}n+n^3)\) time and \(O(2^{8.11\sqrt{n}}n+n^3)\) time, with a conventional method and fast matrix multiplication in the dynamic programming step of the algorithm, respectively. We show that DPBF algorithm solves the planar CDS problem in \(O(2^{9.8\sqrt{n}}n+n^3)\) time with a conventional method and in \(O(2^{8.08\sqrt{n}}n+n^3)\) time with a fast matrix multiplication. For a graph \(G\), let \({\hbox {bw}}(G)\) be the branchwidth of \(G\) and \(\gamma _c(G)\) be the connected dominating number of \(G\). We prove \({\hbox {bw}}(G)\le 2\sqrt{10\gamma _c(G)}+32\). From this result, the planar CDS problem admits an \(O(2^{23.54\sqrt{\gamma _c(G)}}\gamma _c(G)+n^3)\) time fixed-parameter algorithm. We report computational study results on the practical performance of DPBF algorithm, which show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical analysis. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space.  相似文献   

2.
We consider the facility location problem of locating a set \(X_p\) of p facilities (resources) on a network (or a graph) such that the subnetwork (or subgraph) induced by the selected set \(X_p\) is connected. Two problems on a block graph G are proposed: one problem is to minimizes the sum of its weighted distances from all vertices of G to \(X_p\), another problem is to minimize the maximum distance from each vertex that is not in \(X_p\) to \(X_p\) and, at the same time, to minimize the sum of its distances from all vertices of G to \(X_p\). We prove that the first problem is linearly solvable on block graphs with unit edge length. For the second problem, it is shown that the set of Pareto-optimal solutions of the two criteria has cardinality not greater than n, and can be obtained in \(O(n^2)\) time, where n is the number of vertices of the block graph G.  相似文献   

3.
In this note, we consider a discrete fractional programming in light of a decision problem where limited number of indivisible resources are allocated to several heterogeneous projects to maximize the ratio of total profit to total cost. For each project, both profit and cost are solely determined by the amount of resources allocated to it. Although the problem can be reformulated as a linear program with \(O(m^2 n)\) variables and \(O(m^2 n^2)\) constraints, we further show that it can be efficiently solved by induction in \(O(m^3 n^2 \log mn)\) time. In application, this method leads to an \(O(m^3 n^2 \log mn)\) algorithm for assortment optimization problem under nested logit model with cardinality constraints (Feldman and Topaloglu, Oper Res 63: 812–822, 2015).  相似文献   

4.
Let \(G=(V,E)\) be a graph. A set \(S\subseteq V\) is a restrained dominating set if every vertex in \(V-S\) is adjacent to a vertex in \(S\) and to a vertex in \(V-S\). The restrained domination number of \(G\), denoted \(\gamma _{r}(G)\), is the smallest cardinality of a restrained dominating set of \(G\). The best possible upper bound \(q(n,k)\) is established in Joubert (Discrete Appl Math 161:829–837, 2013) on the size \(m(G)\) of a graph \(G\) with a given order \(n \ge 5\) and restrained domination number \(k \in \{3, \ldots , n-2\}\). We extend this result to include the cases \(k=1,2,n\), and characterize graphs \(G\) of order \(n \ge 1\) and restrained domination number \(k \in \{1,\dots , n-2,n\}\) for which \(m(G)=q(n,k)\).  相似文献   

5.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

6.
Let \(G\) be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, \(\gamma _t(G)\). A set \(S\) of vertices in \(G\) is a disjunctive total dominating set of \(G\) if every vertex is adjacent to a vertex of \(S\) or has at least two vertices in \(S\) at distance \(2\) from it. The disjunctive total domination number, \(\gamma ^d_t(G)\), is the minimum cardinality of such a set. We observe that \(\gamma ^d_t(G) \le \gamma _t(G)\). We prove that if \(G\) is a connected graph of order \(n \ge 8\), then \(\gamma ^d_t(G) \le 2(n-1)/3\) and we characterize the extremal graphs. It is known that if \(G\) is a connected claw-free graph of order \(n\), then \(\gamma _t(G) \le 2n/3\) and this upper bound is tight for arbitrarily large \(n\). We show this upper bound can be improved significantly for the disjunctive total domination number. We show that if \(G\) is a connected claw-free graph of order \(n > 14\), then \(\gamma ^d_t(G) \le 4n/7\) and we characterize the graphs achieving equality in this bound.  相似文献   

7.
In this paper we establish a min–max relation in arc-weighted reducible flow graphs. In particular, we prove that the maximum cardinality of feedback arc set packings equals the minimum total weight of cycles. We also present an \(O(n^2 m)\) algorithm for finding a maximum feedback arc set packing in reducible flow graphs.  相似文献   

8.
The Gutman index (also known as Schultz index of the second kind) of a graph \(G\) is defined as \(Gut(G)=\sum \nolimits _{u,v\in V(G)}d(u)d(v)d(u, v)\). A graph \(G\) is called a cactus if each block of \(G\) is either an edge or a cycle. Denote by \(\mathcal {C}(n, k)\) the set of connected cacti possessing \(n\) vertices and \(k\) cycles. In this paper, we give the first three smallest Gutman indices among graphs in \(\mathcal {C}(n, k)\), the corresponding extremal graphs are characterized as well.  相似文献   

9.
Given a graph \(G=(V, E)\), a \(P_2\)-packing \(\mathcal {P}\) is a collection of vertex disjoint copies of \(P_2\)s in \(G\) where a \(P_2\) is a simple path with three vertices and two edges. The Maximum \(P_2\)-Packing problem is to find a \(P_2\)-packing \(\mathcal {P}\) in the input graph \(G\) of maximum cardinality. This problem is NP-hard for cubic graphs. In this paper, we give a branch-and-reduce algorithm for the Maximum \(P_2\)-Packing problem in cubic graphs. We analyze the running time of the algorithm using measure-and-conquer and show that it runs in time \(O^{*}(1.4366^n)\) which is faster than previous known exact algorithms where \(n\) is the number of vertices in the input graph.  相似文献   

10.
The \(L(p, q)\)-labeling arises from the optimization problem of channel assignment in communication networks. For two non-negative integers \(p\) and \(q\), an \(L(p,q)\)-labeling \(c\) of a graph \(G\) is an assignment of non-negative integers to the vertices of \(G\) such that adjacent vertices are labelled using colors at least \(p\) apart, and vertices with distance two are labelled using colors at least \(q\) apart. In this paper we establish a connection between an \(L(p, q)\)-labeling and an integer tension of a graph, which extends a corresponding result for planar graphs. This connection provides us with an effective way to design an \(L(p, q)\)-labeling for non-planar graphs, in particular for graphs embedded on torus, by choosing a proper cycle basis consisting of facial cycles and some specified cycles of the embedded graph. As an application, we use this method to optimize the edge span for the Cartesian product of two cycles.  相似文献   

11.
A graph \(G\) with convex-\(QP\) stability number (or simply a convex-\(QP\) graph) is a graph for which the stability number is equal to the optimal value of a convex quadratic program, say \(P(G)\). There are polynomial-time procedures to recognize convex-\(QP\) graphs, except when the graph \(G\) is adverse or contains an adverse subgraph (that is, a non complete graph, without isolated vertices, such that the least eigenvalue of its adjacency matrix and the optimal value of \(P(G)\) are both integer and none of them changes when the neighborhood of any vertex of \(G\) is deleted). In this paper, from a characterization of convex-\(QP\) graphs based on star sets associated to the least eigenvalue of its adjacency matrix, a simplex-like algorithm for the recognition of convex-\(QP\) adverse graphs is introduced.  相似文献   

12.
A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph \(G=(X,Y,E)\) in which the neighbors of each \(x\in X\) form an interval in \(Y\) where \(Y\) is linearly ordered, and each \(x\in X\) has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a dynamic LWCBG. The graph is subject to the updates of vertex and edge insertions and deletions. Our dynamic algorithms maintain the update operations in \(O(\log ^2{|V|})\) amortized time per update, obtain the matching status of a vertex (whether it is matched) in constant worst-case time, and find the pair of a matched vertex (with which it is matched) in worst-case \(O(k)\) time, where \(k\) is not greater than the cardinality of the maximum weight matching. That achieves the same time bound as the best known solution for the problem of the unweighted version.  相似文献   

13.
Consider a graph G. A subset of vertices, F, is called a vertex cover \(P_t\) (\(VCP_t\)) set if every path of order t contains at least one vertex in F. Finding a minimum \(VCP_t\) set in a graph is is NP-hard for any integer \(t\ge 2\) and is called the \(MVCP_3\) problem. In this paper, we study the parameterized algorithms for the \(MVCP_3\) problem when the underlying graph G is parameterized by the treewidth. Given an n-vertex graph together with its tree decomposition of width at most p, we present an algorithm running in time \(4^{p}\cdot n^{O(1)}\) for the \(MVCP_3\) problem. Moreover, we show that for the \(MVCP_3\) problem on planar graphs, there is a subexponential parameterized algorithm running in time \(2^{O(\sqrt{k})}\cdot n^{O(1)}\) where k is the size of the optimal solution.  相似文献   

14.
Let \(G\) be a finite and simple graph with vertex set \(V(G)\). A signed total Roman dominating function (STRDF) on a graph \(G\) is a function \(f:V(G)\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{x\in N(v)}f(x)\ge 1\) for each vertex \(v\in V(G)\), where \(N(v)\) is the neighborhood of \(v\), and (ii) every vertex \(u\) for which \(f(u)=-1\) is adjacent to at least one vertex \(v\) for which \(f(v)=2\). The weight of an SRTDF \(f\) is \(\sum _{v\in V(G)}f(v)\). The signed total Roman domination number \(\gamma _{stR}(G)\) of \(G\) is the minimum weight of an STRDF on \(G\). In this paper we initiate the study of the signed total Roman domination number of graphs, and we present different bounds on \(\gamma _{stR}(G)\). In addition, we determine the signed total Roman domination number of some classes of graphs.  相似文献   

15.
We initiate the study of relaxed \(L(2,1)\)-labelings of graphs. Suppose \(G\) is a graph. Let \(u\) be a vertex of \(G\). A vertex \(v\) is called an \(i\)-neighbor of \(u\) if \(d_G(u,v)=i\). A \(1\)-neighbor of \(u\) is simply called a neighbor of \(u\). Let \(s\) and \(t\) be two nonnegative integers. Suppose \(f\) is an assignment of nonnegative integers to the vertices of \(G\). If the following three conditions are satisfied, then \(f\) is called an \((s,t)\)-relaxed \(L(2,1)\)-labeling of \(G\): (1) for any two adjacent vertices \(u\) and \(v\) of \(G, f(u)\not =f(v)\); (2) for any vertex \(u\) of \(G\), there are at most \(s\) neighbors of \(u\) receiving labels from \(\{f(u)-1,f(u)+1\}\); (3) for any vertex \(u\) of \(G\), the number of \(2\)-neighbors of \(u\) assigned the label \(f(u)\) is at most \(t\). The minimum span of \((s,t)\)-relaxed \(L(2,1)\)-labelings of \(G\) is called the \((s,t)\)-relaxed \(L(2,1)\)-labeling number of \(G\), denoted by \(\lambda ^{s,t}_{2,1}(G)\). It is clear that \(\lambda ^{0,0}_{2,1}(G)\) is the so called \(L(2,1)\)-labeling number of \(G\). \(\lambda ^{1,0}_{2,1}(G)\) is simply written as \(\widetilde{\lambda }(G)\). This paper discusses basic properties of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of graphs. For any two nonnegative integers \(s\) and \(t\), the exact values of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of paths, cycles and complete graphs are determined. Tight upper and lower bounds for \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of complete multipartite graphs and trees are given. The upper bounds for \((s,1)\)-relaxed \(L(2,1)\)-labeling number of general graphs are also investigated. We introduce a new graph parameter called the breaking path covering number of a graph. A breaking path \(P\) is a vertex sequence \(v_1,v_2,\ldots ,v_k\) in which each \(v_i\) is adjacent to at least one vertex of \(v_{i-1}\) and \(v_{i+1}\) for \(i=2,3,\ldots ,k-1\). A breaking path covering of \(G\) is a set of disjoint such vertex sequences that cover all vertices of \(G\). The breaking path covering number of \(G\), denoted by \(bpc(G)\), is the minimum number of breaking paths in a breaking path covering of \(G\). In this paper, it is proved that \(\widetilde{\lambda }(G)= n+bpc(G^{c})-2\) if \(bpc(G^{c})\ge 2\) and \(\widetilde{\lambda }(G)\le n-1\) if and only if \(bpc(G^{c})=1\). The breaking path covering number of a graph is proved to be computable in polynomial time. Thus, if a graph \(G\) is of diameter two, then \(\widetilde{\lambda }(G)\) can be determined in polynomial time. Several conjectures and problems on relaxed \(L(2,1)\)-labelings are also proposed.  相似文献   

16.
We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of k, we consider properties of \(D_k(G)\), the graph consisting of a node for each dominating set of size at most k and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that \(D_{\varGamma (G)+1}(G)\) is not necessarily connected, for \(\varGamma (G)\) the maximum cardinality of a minimal dominating set in G. The result holds even when graphs are constrained to be planar, of bounded tree-width, or b-partite for \(b \ge 3\). Moreover, we construct an infinite family of graphs such that \(D_{\gamma (G)+1}(G)\) has exponential diameter, for \(\gamma (G)\) the minimum size of a dominating set. On the positive side, we show that \(D_{n-\mu }(G)\) is connected and of linear diameter for any graph G on n vertices with a matching of size at least \(\mu +1\).  相似文献   

17.
Let \(G=(V,E)\) be a graph. A set \(S\subseteq V\) is a restrained dominating set if every vertex in \(V-S\) is adjacent to a vertex in \(S\) and to a vertex in \(V-S\). The restrained domination number of \(G\), denoted \(\gamma _{r}(G)\), is the smallest cardinality of a restrained dominating set of \(G\). Consider a bipartite graph \(G\) of order \(n\ge 4,\) and let \(k\in \{2,3,...,n-2\}.\) In this paper we will show that if \(\gamma _{r}(G)=k\), then \(m\le ((n-k)(n-k+6)+4k-8)/4\). We will also show that this bound is best possible.  相似文献   

18.
For a connected graph \(G = \left( V,E\right) \), a set \(S\subseteq E(G)\) is called a total edge-to-vertex monophonic set of a connected graph G if the subgraph induced by S has no isolated edges. The total edge-to-vertex monophonic number \(m_{tev}(G)\) of G is the minimum cardinality of its total edge-to-vertex monophonic set of G. The total edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size \(q \ge 3 \) with total edge-to-vertex monophonic number q is characterized. It is shown that for positive integers \(r_{m},d_{m}\) and \(l\ge 4\) with \(r_{m}< d_{m} \le 2 r_{m}\), there exists a connected graph G with \(\textit{rad}_ {m} G = r_{m}\), \(\textit{diam}_ {m} G = d_{m}\) and \(m_{tev}(G) = l\) and also shown that for every integers a and b with \(2 \le a \le b\), there exists a connected graph G such that \( m_{ev}\left( G\right) = b\) and \(m_{tev}(G) = a + b\). A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of S, denoted by \(f_{tev}(S)\) is the cardinality of a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of G, denoted by \(f_{tev}(G) = \textit{min}\{f_{tev}(S)\}\), where the minimum is taken over all total edge-to-vertex monophonic set S in G. The forcing total edge-to-vertex monophonic number of certain classes of graphs are determined and some of its general properties are studied. It is shown that for every integers a and b with \(0 \le a \le b\) and \(b \ge 2\), there exists a connected graph G such that \(f_{tev}(G) = a\) and \( m _{tev}(G) = b\), where \( f _{tev}(G)\) is the forcing total edge-to-vertex monophonic number of G.  相似文献   

19.
Let \(G=(V,E)\) be a simple graph without isolated vertices. A set \(S\) of vertices is a total dominating set of a graph \(G\) if every vertex of \(G\) is adjacent to some vertex in \(S\). A paired dominating set of \(G\) is a dominating set whose induced subgraph has a perfect matching. The minimum cardinality of a total dominating set (respectively, a paired dominating set) is the total domination number (respectively, the paired domination number). Hu and Xu (J Combin Optim 27(2):369–378, 2014) computed the exact values of total and paired domination numbers of Cartesian product \(C_n\square C_m\) for \(m=3,4\). Graph bundles generalize the notions of covering graphs and Cartesian products. In this paper, we generalize these results given in Hu and Xu (J Combin Optim 27(2):369–378, 2014) to graph bundle and compute the total domination number and the paired domination number of \(C_m\) bundles over a cycle \(C_n\) for \(m=3,4\). Moreover, we give the exact value for the total domination number of Cartesian product \(C_n\square C_5\) and some upper bounds of \(C_m\) bundles over a cycle \(C_n\) where \(m\ge 5\).  相似文献   

20.
Let \(G=(V,E)\) be a graph and \(\phi \) be a total \(k\)-coloring of \(G\) using the color set \(\{1,\ldots , k\}\). Let \(\sum _\phi (u)\) denote the sum of the color of the vertex \(u\) and the colors of all incident edges of \(u\). A \(k\)-neighbor sum distinguishing total coloring of \(G\) is a total \(k\)-coloring of \(G\) such that for each edge \(uv\in E(G)\), \(\sum _\phi (u)\ne \sum _\phi (v)\). By \(\chi ^{''}_{nsd}(G)\), we denote the smallest value \(k\) in such a coloring of \(G\). Pil?niak and Wo?niak first introduced this coloring and conjectured that \(\chi _{nsd}^{''}(G)\le \Delta (G)+3\) for any simple graph \(G\). In this paper, we prove that the conjecture holds for planar graphs without intersecting triangles with \(\Delta (G)\ge 7\). Moreover, we also show that \(\chi _{nsd}^{''}(G)\le \Delta (G)+2\) for planar graphs without intersecting triangles with \(\Delta (G) \ge 9\). Our approach is based on the Combinatorial Nullstellensatz and the discharging method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号