首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An adjacent vertex-distinguishing edge coloring of a graph is a proper edge coloring such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex-distinguishing edge chromatic number is the minimum number of colors required for an adjacent vertex-distinguishing edge coloring, denoted as \(\chi '_{as}(G)\). In this paper, we prove that for a connected graph G with maximum degree \(\Delta \ge 3\), \(\chi '_{as}(G)\le 3\Delta -1\), which proves the previous upper bound. We also prove that for a graph G with maximum degree \(\Delta \ge 458\) and minimum degree \(\delta \ge 8\sqrt{\Delta ln \Delta }\), \(\chi '_{as}(G)\le \Delta +1+5\sqrt{\Delta ln \Delta }\).  相似文献   

2.
A vertex coloring is said to be 2-distance if any two distinct vertices of distance at most 2 receive different colors. Let G be a planar graph with girth at least 5. In this paper, we prove that G admits a 2-distance coloring with at most \(\Delta (G)+3\) colors if \(\Delta (G)\ge 339\).  相似文献   

3.
The problem of list coloring of graphs appears in practical problems concerning channel or frequency assignment. In this paper, we study the minimum number of choosability of planar graphs. A graph G is edge-k-choosable if whenever every edge x is assigned with a list of at least k colors, L(x)), there exists an edge coloring \(\phi \) such that \(\phi (x) \in L(x)\). Similarly, A graph G is toal-k-choosable if when every element (edge or vertex) x is assigned with a list of at least k colors, L(x), there exists an total coloring \(\phi \) such that \(\phi (x) \in L(x)\). We proved \(\chi '_{l}(G)=\Delta \) and \(\chi ''_{l}(G)=\Delta +1\) for a planar graph G with maximum degree \(\Delta \ge 8\) and without chordal 6-cycles, where the list edge chromatic number \(\chi '_{l}(G)\) of G is the smallest integer k such that G is edge-k-choosable and the list total chromatic number \(\chi ''_{l}(G)\) of G is the smallest integer k such that G is total-k-choosable.  相似文献   

4.
A 2-distance k-coloring of a graph G is a proper k-coloring such that any two vertices at distance two get different colors. \(\chi _{2}(G)\)=min{k|G has a 2-distance k-coloring}. Wegner conjectured that for each planar graph G with maximum degree \(\Delta \), \(\chi _2(G) \le 7\) if \(\Delta \le 3\), \(\chi _2(G) \le \Delta +5\) if \(4\le \Delta \le 7\) and \(\chi _2(G) \le \lfloor \frac{3\Delta }{2}\rfloor +1\) if \(\Delta \ge 8\). In this paper, we prove that: (1) If G is a planar graph with maximum degree \(\Delta \le 5\), then \(\chi _{2}(G)\le 20\); (2) If G is a planar graph with maximum degree \(\Delta \ge 6\), then \(\chi _{2}(G)\le 5\Delta -7\).  相似文献   

5.
Let \(G=(V,E)\) be a graph and \(\phi : V\cup E\rightarrow \{1,2,\ldots ,k\}\) be a proper total coloring of G. Let f(v) denote the sum of the color on a vertex v and the colors on all the edges incident with v. The coloring \(\phi \) is neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number of G, denoted by \(\chi _{\Sigma }''(G)\). Pil?niak and Wo?niak conjectured that \(\chi _{\Sigma }''(G)\le \Delta (G)+3\) for any simple graph. By using the famous Combinatorial Nullstellensatz, we prove that \(\chi _{\Sigma }''(G)\le \max \{\Delta (G)+2, 10\}\) for planar graph G without 4-cycles. The bound \(\Delta (G)+2\) is sharp if \(\Delta (G)\ge 8\).  相似文献   

6.
A 2-distance coloring of a graph is a coloring of the vertices such that two vertices at distance at most two receive distinct colors. The 2-distance chromatic number \(\chi _{2}(G)\) is the smallest k such that G is k-2-distance colorable. In this paper, we prove that every planar graph without 3, 4, 7-cycles and \(\Delta (G)\ge 15\) is (\(\Delta (G)+4\))-2-distance colorable.  相似文献   

7.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent or incident elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. An adjacent vertex distinguishing total-k-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ^{\prime \prime }_{a}(G)\). It is known that \(\chi _{a}^{\prime \prime }(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 10\). In this paper, we consider the list version of this coloring and show that if G is a planar graph with \(\Delta (G)\ge 11\), then \({ ch}_{a}^{\prime \prime }(G)\le \Delta (G)+3\), where \({ ch}^{\prime \prime }_a(G)\) is the adjacent vertex distinguishing total choosability.  相似文献   

8.
A total coloring of a graph G is a coloring such that no two adjacent or incident elements receive the same color. In this field there is a famous conjecture, named Total Coloring Conjecture, saying that the the total chromatic number of each graph G is at most \(\Delta +2\). Let G be a planar graph with maximum degree \(\Delta \ge 7\) and without adjacent chordal 6-cycles, that is, two cycles of length 6 with chord do not share common edges. In this paper, it is proved that the total chromatic number of G is \(\Delta +1\), which partly confirmed Total Coloring Conjecture.  相似文献   

9.
A proper total k-coloring \(\phi \) of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\dots , k\}\) such that no adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let \(m_{\phi }(v)\) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if \(m_{\phi }(u)\not =m_{\phi }(v)\) for each edge \(uv\in E(G).\) Let \(\chi _{\Sigma }^t(G)\) be the neighbor sum distinguishing total chromatic number of a graph G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi _{\Sigma }^t(G)\le \Delta (G)+3\). In this paper, we show that if G is a graph with treewidth \(\ell \ge 3\) and \(\Delta (G)\ge 2\ell +3\), then \(\chi _{\Sigma }^t(G)\le \Delta (G)+\ell -1\). This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when \(\ell =3\) and \(\Delta \ge 9\), we show that \(\Delta (G) + 1\le \chi _{\Sigma }^t(G)\le \Delta (G)+2\) and characterize graphs with equalities.  相似文献   

10.
A proper k-total coloring of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\ldots ,k\}\) such that no two adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let f(v) denote the sum of the colors on the edges incident with v and the color on vertex v. A proper k-total coloring of G is called neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). Let \(\chi ''_{\Sigma }(G)\) denote the smallest integer k in such a coloring of G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi ''_{\Sigma }(G)\le \Delta (G)+3\). In this paper, we show that if G is a 2-degenerate graph, then \(\chi ''_{\Sigma }(G)\le \Delta (G)+3\); Moreover, if \(\Delta (G)\ge 5\) then \(\chi ''_{\Sigma }(G)\le \Delta (G)+2\).  相似文献   

11.
A total-[k]-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that \(f(u)\ne f(v)\), where \(uv\in E(G)\). By \(\chi ^{\prime \prime }_{\prod }(G)\), we denote the smallest value k in such a coloring of G. We conjecture that \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a \(K_4\)-minor free graph with \(\Delta (G)\ge 4\), then \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2\).  相似文献   

12.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   

13.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. A total-k-adjacent vertex distinguishing-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ''_{a}(G)\). It is known that \(\chi _{a}''(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 11\). In this paper, we show that if G is a planar graph with \(\Delta (G)\ge 10\), then \(\chi _{a}''(G)\le \Delta (G)+3\). Our approach is based on Combinatorial Nullstellensatz and the discharging method.  相似文献   

14.
Neighbor sum distinguishing total choosability of planar graphs   总被引:1,自引:1,他引:0  
A total-k-coloring of a graph G is a mapping \(c: V(G)\cup E(G)\rightarrow \{1, 2,\dots , k\}\) such that any two adjacent or incident elements in \(V(G)\cup E(G)\) receive different colors. For a total-k-coloring of G, let \(\sum _c(v)\) denote the total sum of colors of the edges incident with v and the color of v. If for each edge \(uv\in E(G)\), \(\sum _c(u)\ne \sum _c(v)\), then we call such a total-k-coloring neighbor sum distinguishing. The least number k needed for such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by \(\chi _{\Sigma }^{''}(G)\). Pil?niak and Wo?niak conjectured \(\chi _{\Sigma }^{''}(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that for any planar graph G with maximum degree \(\Delta (G)\), \(ch^{''}_{\Sigma }(G)\le \max \{\Delta (G)+3,16\}\), where \(ch^{''}_{\Sigma }(G)\) is the neighbor sum distinguishing total choosability of G.  相似文献   

15.
The First-Fit (or Grundy) chromatic number of a graph G denoted by \(\chi _{{_\mathsf{FF}}}(G)\), is the maximum number of colors used by the First-Fit (greedy) coloring algorithm when applied to G. In this paper we first show that any graph G contains a bipartite subgraph of Grundy number \(\lfloor \chi _{{_\mathsf{FF}}}(G) /2 \rfloor +1\). Using this result we prove that for every \(t\ge 2\) there exists a real number \(c>0\) such that in every graph G on n vertices and without cycles of length 2t, any First-Fit coloring of G uses at most \(cn^{1/t}\) colors. It is noted that for \(t=2\) this bound is the best possible. A compactness conjecture is also proposed concerning the First-Fit chromatic number involving the even girth of graphs.  相似文献   

16.
In the study of computer science, optimization, computation of Hessians matrix, graph coloring is an important tool. In this paper, we consider a classical coloring, total coloring. Let \(G=(V,E)\) be a graph. Total coloring is a coloring of \(V\cup {E}\) such that no two adjacent or incident elements (vertex/edge) receive the same color. Let G be a planar graph with \(\varDelta \ge 8\). We proved that if for every vertex \(v\in V\), there exists two integers \(i_v,j_v\in \{3,4,5,6,7\}\) such that v is not incident with adjacent \(i_v\)-cycles and \(j_v\)-cycles, then the total chromatic number of graph G is \(\varDelta +1\).  相似文献   

17.
Let \(G=(V, E)\) be a simple graph and denote the set of edges incident to a vertex v by E(v). The neighbor sum distinguishing (NSD) total choice number of G, denoted by \(\mathrm{ch}_{\Sigma }^{t}(G)\), is the smallest integer k such that, after assigning each \(z\in V\cup E\) a set L(z) of k real numbers, G has a total coloring \(\phi \) satisfying \(\phi (z)\in L(z)\) for each \(z\in V\cup E\) and \(\sum _{z\in E(u)\cup \{u\}}\phi (z)\ne \sum _{z\in E(v)\cup \{v\}}\phi (z)\) for each \(uv\in E\). In this paper, we propose some reducible configurations of NSD list total coloring for general graphs by applying the Combinatorial Nullstellensatz. As an application, we present that \(\mathrm{ch}^{t}_{\Sigma }(G)\le \Delta (G)+3\) for every subcubic graph G.  相似文献   

18.
An r-acyclic edge coloring of a graph G is a proper edge coloring such that any cycle C has at least \(\min \{|C|,r\}\) colors. The least number of colors needed for an r-acyclic edge coloring of G is called the r-acyclic edge chromatic number or the r-acyclic chromatic index of G, denoted by \(A'_{r}\left( G\right) \). In this paper, we study the r-acyclic edge chromatic number with \(r\ge 4\) and prove that \(A'_{r}\left( G\right) \le 2\Delta ^{\lfloor \tfrac{r}{2}\rfloor }+O\left( \Delta ^{\tfrac{r+1}{3}}\right) \). We also prove that when r is even, \(A'_{r}\left( G\right) \le \Delta ^{\tfrac{r}{2}}+O\left( \Delta ^{\tfrac{r+1}{3}}\right) \), which is asymptotically optimal. In addition, we investigate how the r-acyclic edge chromatic number performs as the girth increases. It is proved in this paper that for every graph G with girth at least \(2r-1\), \(A'_r\left( G\right) \le \left( 9r-7\right) \Delta +10r-12\) holds. Our approach is based on the entropy compression method.  相似文献   

19.
For graphs G and H, let \(G\rightarrow (H,H)\) signify that any red/blue edge coloring of G contains a monochromatic H as a subgraph. Denote \(\mathcal {H}(\Delta ,n)=\{H:|V(H)|=n,\Delta (H)\le \Delta \}\). For any \(\Delta \) and n, we say that G is partition universal for \(\mathcal {H}(\Delta ,n)\) if \(G\rightarrow (H,H)\) for every \(H\in \mathcal {H}(\Delta ,n)\). Let \(G_r(N,p)\) be the random spanning subgraph of the complete r-partite graph \(K_r(N)\) with N vertices in each part, in which each edge of \(K_r(N)\) appears with probability p independently and randomly. We prove that for fixed \(\Delta \ge 2\) there exist constants rB and C depending only on \(\Delta \) such that if \(N\ge Bn\) and \(p=C(\log N/N)^{1/\Delta }\), then asymptotically almost surely \(G_r(N,p)\) is partition universal for \(\mathcal {H}(\Delta ,n)\).  相似文献   

20.
A coloring of a graph \(G=(V,E)\) is a partition \(\{V_1, V_2, \ldots , V_k\}\) of V into independent sets or color classes. A vertex \(v\in V_i\) is a Grundy vertex if it is adjacent to at least one vertex in each color class \(V_j\) for every \(j<i\). A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number \(\Gamma (G)\) of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a \(\{P_{4}, C_4\}\)-free graph by supporting a conjecture of Zaker, which says that \(\Gamma (G)\ge \delta (G)+1\) for any \(C_4\)-free graph G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号