首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Count data consists of discrete non-negative integer values. Poisson regression model is one of the most popular model used to model count data. This model assumes that response variable has Poisson distribution. The purpose of this article is to assess distributional assumption of this model by using some goodness of fit tests. These tests are compared in respect to type I error and power rates of tests with different samples, parameters and sample sizes. Simulation study suggests that the most powerful tests are generally Dean–Lawless and Cameron–Trivedi score tests.  相似文献   

2.
In this study, score test statistics for testing independence in the zero-truncated bivariate Poisson distributions are proposed. The Monte Carlo study shows that the score tests proposed in this article keep the significance level close to the nominal one, but the LR and Wald tests over-reject the null hypothesis when it is true. The score tests for testing independence in the zero-truncated bivariate Poisson regression models are also derived in this study.  相似文献   

3.
The mixed linear model is a popular method for analysing unbalanced repeated measurement data. The classical statistical tests for parameters in this model are based on asymptotic theory that is unreliable in the small samples that are often encountered in practice. For testing a given fixed effect parameter with a small sample, we develop and investigate refined likelihood ratio (LR) tests. The refinements considered are the Bartlett correction and use of the Cox–Reid adjusted likelihood; these are examined separately and in combination. We illustrate the various LR tests on an actual data set and compare them in two simulation studies. The conventional LR test yields type I error rates that are higher than nominal. The adjusted LR test yields rates that are lower than nominal, with absolute accuracy similar to that of the conventional LR test in the first simulation study and better in the second. The Bartlett correction substantially improves the accuracy of the type I error rates with either the conventional or the adjusted LR test. In many cases, error rates that are very close to nominal are achieved with the refined methods.  相似文献   

4.
5.
This paper investigates improved testing inferences under a general multivariate elliptical regression model. The model is very flexible in terms of the specification of the mean vector and the dispersion matrix, and of the choice of the error distribution. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal and Student-t distributions as special cases. We obtain Skovgaard's adjusted likelihood ratio (LR) statistics and Barndorff-Nielsen's adjusted signed LR statistics and we compare the methods through simulations. The simulations suggest that the proposed tests display superior finite sample behaviour as compared to the standard tests. Two applications are presented in order to illustrate the methods.  相似文献   

6.
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.  相似文献   

7.
This note discusses an extension to the score test statistics for overdispersion in Poisson and binomial regression models [Dean, C.B., 1992. Testing for overdispersion in Poisson and binomial regression models. J. Amer. Statist. Assoc. 87, 451–457]. Examples illustrate the application of the extended results.  相似文献   

8.
We use the empirical likelihood ratio approach introduced by Owen (Biometrika 75 (1988), 237–249) to test for or against a set of inequality constraints when the parameters are defined by estimating functions. Our objective in this paper is to show that under fairly general conditions, the limiting distributions of the empirical likelihood ratio test statistics are of chi-bar square type (as in the parametric case) and give the expression of the weighting values. The results obtained here are similar to those in El Barmi and Dykstra (1995) where a full distributional model is assumed. This work presents also an extension of the results in Qin and Lawless (1995).  相似文献   

9.
We deal with a general class of extreme-value regression models introduced by Barreto-Souza and Vasconcellos [Bias and skewness in a general extreme-value regression model, Comput. Statist. Data Anal. 55 (2011), pp. 1379–1393]. Our goal is to derive an adjusted likelihood ratio statistic that is approximately distributed as χ2 with a high degree of accuracy. Although the adjusted statistic requires more computational effort than its unadjusted counterpart, it is shown that the adjustment term has a simple compact form that can be easily implemented in standard statistical software. Further, we compare the finite-sample performance of the three classical tests (likelihood ratio, Wald, and score), the gradient test that has been recently proposed by Terrell [The gradient statistic, Comput. Sci. Stat. 34 (2002), pp. 206–215], and the adjusted likelihood ratio test obtained in this article. Our simulations favour the latter. Applications of our results are presented.  相似文献   

10.
Variable selection is an important issue in all regression analysis and in this paper, we discuss this in the context of regression analysis of recurrent event data. Recurrent event data often occur in long-term studies in which individuals may experience the events of interest more than once and their analysis has recently attracted a great deal of attention (Andersen et al., Statistical models based on counting processes, 1993; Cook and Lawless, Biometrics 52:1311–1323, 1996, The analysis of recurrent event data, 2007; Cook et al., Biometrics 52:557–571, 1996; Lawless and Nadeau, Technometrics 37:158-168, 1995; Lin et al., J R Stat Soc B 69:711–730, 2000). However, it seems that there are no established approaches to the variable selection with respect to recurrent event data. For the problem, we adopt the idea behind the nonconcave penalized likelihood approach proposed in Fan and Li (J Am Stat Assoc 96:1348–1360, 2001) and develop a nonconcave penalized estimating function approach. The proposed approach selects variables and estimates regression coefficients simultaneously and an algorithm is presented for this process. We show that the proposed approach performs as well as the oracle procedure in that it yields the estimates as if the correct submodel was known. Simulation studies are conducted for assessing the performance of the proposed approach and suggest that it works well for practical situations. The proposed methodology is illustrated by using the data from a chronic granulomatous disease study.  相似文献   

11.
Overdispersion is a common phenomenon in Poisson modeling. The generalized Poisson (GP) regression model accommodates both overdispersion and underdispersion in count data modeling, and is an increasingly popular platform for modeling overdispersed count data. The Poisson model is one of the special cases in the collection of models which may be specified by GP regression. Thus, we may derive a test of overdispersion which compares the equi-dispersion Poisson model within the context of the more general GP regression model. The score test has an advantage over the likelihood ratio test (LRT) and over the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis (the Poisson model). Herein, we propose a score test for overdispersion based on the GP model (specifically the GP-2 model) and compare the power of the test with the LRT and Wald tests. A simulation study indicates the proposed score test based on asymptotic standard normal distribution is more appropriate in practical applications.  相似文献   

12.
This article discusses the preliminary test approach for the regression parameter in multiple regression model. The preliminary test Liu-type estimators based on the Wald (W), Likelihood ratio (LR), and Lagrangian multiplier(LM) tests are presented, when it is supposed that the regression parameter may be restricted to a subspace. We also give the bias and mean squared error of the proposed estimators and the superior of the proposed estimators is also discussed.  相似文献   

13.
In several cases, count data often have excessive number of zero outcomes. This zero-inflated phenomenon is a specific cause of overdispersion, and zero-inflated Poisson regression model (ZIP) has been proposed for accommodating zero-inflated data. However, if the data continue to suggest additional overdispersion, zero-inflated negative binomial (ZINB) and zero-inflated generalized Poisson (ZIGP) regression models have been considered as alternatives. This study proposes the score test for testing ZIP regression model against ZIGP alternatives and proves that it is equal to the score test for testing ZIP regression model against ZINB alternatives. The advantage of using the score test over other alternative tests such as likelihood ratio and Wald is that the score test can be used to determine whether a more complex model is appropriate without fitting the more complex model. Applications of the proposed score test on several datasets are also illustrated.  相似文献   

14.
We consider the Whittle likelihood estimation of seasonal autoregressive fractionally integrated moving‐average models in the presence of an additional measurement error and show that the spectral maximum Whittle likelihood estimator is asymptotically normal. We illustrate by simulation that ignoring measurement errors may result in incorrect inference. Hence, it is pertinent to test for the presence of measurement errors, which we do by developing a likelihood ratio (LR) test within the framework of Whittle likelihood. We derive the non‐standard asymptotic null distribution of this LR test and the limiting distribution of LR test under a sequence of local alternatives. Because in practice, we do not know the order of the seasonal autoregressive fractionally integrated moving‐average model, we consider three modifications of the LR test that takes model uncertainty into account. We study the finite sample properties of the size and the power of the LR test and its modifications. The efficacy of the proposed approach is illustrated by a real‐life example.  相似文献   

15.
Heteroscedasticity checking in regression analysis plays an important role in modelling. It is of great interest when random errors are correlated, including autocorrelated and partial autocorrelated errors. In this paper, we consider multivariate t linear regression models, and construct the score test for the case of AR(1) errors, and ARMA(s,d) errors. The asymptotic properties, including asymptotic chi-square and approximate powers under local alternatives of the score tests, are studied. Based on modified profile likelihood, the adjusted score test is also developed. The finite sample performance of the tests is investigated through Monte Carlo simulations, and also the tests are illustrated with two real data sets.  相似文献   

16.
The zero-inflated negative binomial (ZINB) model is used to account for commonly occurring overdispersion detected in data that are initially analyzed under the zero-inflated Poisson (ZIP) model. Tests for overdispersion (Wald test, likelihood ratio test [LRT], and score test) based on ZINB model for use in ZIP regression models have been developed. Due to similarity to the ZINB model, we consider the zero-inflated generalized Poisson (ZIGP) model as an alternate model for overdispersed zero-inflated count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes score tests for overdispersion based on the ZIGP model and illustrates that the derived score statistics are exactly the same as the score statistics under the ZINB model. A simulation study indicates the proposed score statistics are preferred to other tests for higher empirical power. In practice, based on the approximate mean–variance relationship in the data, the ZINB or ZIGP model can be considered, and a formal score test based on asymptotic standard normal distribution can be employed for assessing overdispersion in the ZIP model. We provide an example to illustrate the procedures for data analysis.  相似文献   

17.
We consider settings where it is of interest to fit and assess regression submodels that arise as various explanatory variables are excluded from a larger regression model. The larger model is referred to as the full model; the submodels are the reduced models. We show that a computationally efficient approximation to the regression estimates under any reduced model can be obtained from a simple weighted least squares (WLS) approach based on the estimated regression parameters and covariance matrix from the full model. This WLS approach can be considered an extension to unbiased estimating equations of a first-order Taylor series approach proposed by Lawless and Singhal. Using data from the 2010 Nationwide Inpatient Sample (NIS), a 20% weighted, stratified, cluster sample of approximately 8 million hospital stays from approximately 1000 hospitals, we illustrate the WLS approach when fitting interval censored regression models to estimate the effect of type of surgery (robotic versus nonrobotic surgery) on hospital length-of-stay while adjusting for three sets of covariates: patient-level characteristics, hospital characteristics, and zip-code level characteristics. Ordinarily, standard fitting of the reduced models to the NIS data takes approximately 10 hours; using the proposed WLS approach, the reduced models take seconds to fit.  相似文献   

18.
Abstract

The objective of this paper is to propose an efficient estimation procedure in a marginal mean regression model for longitudinal count data and to develop a hypothesis test for detecting the presence of overdispersion. We extend the matrix expansion idea of quadratic inference functions to the negative binomial regression framework that entails accommodating both the within-subject correlation and overdispersion issue. Theoretical and numerical results show that the proposed procedure yields a more efficient estimator asymptotically than the one ignoring either the within-subject correlation or overdispersion. When the overdispersion is absent in data, the proposed method might hinder the estimation efficiency in practice, yet the Poisson regression based regression model is fitted to the data sufficiently well. Therefore, we construct the hypothesis test that recommends an appropriate model for the analysis of the correlated count data. Extensive simulation studies indicate that the proposed test can identify the effective model consistently. The proposed procedure is also applied to a transportation safety study and recommends the proposed negative binomial regression model.  相似文献   

19.
The exponential family structure of the joint distribution of generalized order statistics is utilized to establish multivariate tests on the model parameters. For simple and composite null hypotheses, the likelihood ratio test (LR test), Wald's test, and Rao's score test are derived and turn out to have simple representations. The asymptotic distribution of the corresponding test statistics under the null hypothesis is stated, and, in case of a simple null hypothesis, asymptotic optimality of the LR test is addressed. Applications of the tests are presented; in particular, we discuss their use in reliability, and to decide whether a Poisson process is homogeneous. Finally, a power study is performed to measure and compare the quality of the tests for both, simple and composite null hypotheses.  相似文献   

20.
In this paper, we consider modifying the score statistic proposed by Prentice and Gloeckler [Prentice, R. L., & Gloeckler, L. A. (1978). Regression analysis of grouped data with applications to breast cancer data. Biometrics, 34, 57–67] for the grouped data under the proportional hazards model. For this matter, we apply the likelihood method and derive the scores without re-parameterization as a discrete model. Then we illustrate the test with an example and compare the efficiency with the test of Prentice and Gloeckler’s statistic by obtaining empirical powers through simulation study. Also we discuss some possible extension and estimated variances of the score statistic as concluding remarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号