首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new lifetime model, which extends the Fréchet distribution called the generalized transmuted Fréchet distribution is proposed and studied. Various of its structural properties including ordinary and incomplete moments, generating function, residual and reversed residual lifes, order statistics and probability weighted moments are derived. Two characterization theorems are presented. The maximum likelihood method is used to estimate the model parameters. The flexibility of the new distribution is illustrated using a real data set. It can serve as an alternative model to other lifetime models available in the literature for modeling positive real data in many areas.  相似文献   

2.
3.
In the past few years, the Lindley distribution has gained popularity for modeling lifetime data as an alternative to the exponential distribution. This paper provides two new characterizations of the Lindley distribution. The first characterization is based on a relation between left truncated moments and failure rate function. The second characterization is based on a relation between right truncated moments and reversed failure rate function.  相似文献   

4.
The two-parameter generalized exponential distribution has been used recently quite extensively to analyze lifetime data. In this paper the two-parameter generalized exponential distribution has been embedded in a larger class of distributions obtained by introducing another shape parameter. Because of the additional shape parameter, more flexibility has been introduced in the family. It is observed that the new family is positively skewed, and has increasing, decreasing, unimodal and bathtub shaped hazard functions. It can be observed as a proportional reversed hazard family of distributions. This new family of distributions is analytically quite tractable and it can be used quite effectively to analyze censored data also. Analyses of two data sets are performed and the results are quite satisfactory.  相似文献   

5.
ABSTRACT

The binomial exponential 2 (BE2) distribution was proposed by Bakouch et al. as a distribution of a random sum of independent exponential random variables, when the sample size has a zero truncated binomial distribution. In this article, we introduce a generalization of BE2 distribution which offers a more flexible model for lifetime data than the BE2 distribution. The hazard rate function of the proposed distribution can be decreasing, increasing, decreasing–increasing–decreasing and unimodal, so it turns out to be quite flexible for analyzing non-negative real life data. Some statistical properties and parameters estimation of the distribution are investigated. Three different algorithms are proposed for generating random data from the new distribution. Two real data applications regarding the strength data and Proschan's air-conditioner data are used to show that the new distribution is better than the BE2 distribution and some other well-known distributions in modeling lifetime data.  相似文献   

6.
In this paper, we introduce a new lifetime distribution by compounding exponential and Poisson–Lindley distributions, named the exponential Poisson–Lindley (EPL) distribution. A practical situation where the EPL distribution is most appropriate for modelling lifetime data than exponential–geometric, exponential–Poisson and exponential–logarithmic distributions is presented. We obtain the density and failure rate of the EPL distribution and properties such as mean lifetime, moments, order statistics and Rényi entropy. Furthermore, estimation by maximum likelihood and inference for large samples are discussed. The paper is motivated by two applications to real data sets and we hope that this model will be able to attract wider applicability in survival and reliability.  相似文献   

7.
The hazard rate (HR) and mean residual lifetime are two of the most practical and best-known functions in biometry, reliability, statistics and life testing. Recently, the reversed HR function is found to have interesting properties useful in additional areas such as censored data and forensic science. For these three biometric functions, we propose testing methods that they take on a known functional form against that they dominate or are dominated by this known form. This goodness-of-fit-type testing is wider in applications and more interesting than the long-standing testing procedures for exponentiality against the monotonicity of these functions or even the change point problems. This is so since we can test against any choice of the survival distribution and not just exponentiality. For this general testing, we present easy to implement tests and generalize them into classes of statistics that could lead to more powerful and efficient testing.  相似文献   

8.
Abstract

The present paper aims at studying the mean past lifetime of a discrete random variable. The notion of discrete mean past lifetime is studied in relation to the concepts of reversed hazard rate, reversed lack of memory property, and cumulative past entropy. New classes of distributions characterized by particular forms of discrete mean past life are also investigated. Implications of an increasing mean past lifetime on other reliability notions are studied and finally some bivariate generalizations are discussed.  相似文献   

9.
ABSTRACT

We introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley power series (EPLPS) distribution. The new distribution arises on a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the minimum lifetime value among all risks. The distribution exhibits a variety of bathtub-shaped hazard rate functions. It contains as particular cases several lifetime distributions. Various properties of the distribution are investigated including closed-form expressions for the density function, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Expressions for the Rényi and Shannon entropies are also given. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Finally, two data applications are given showing flexibility and potentiality of the EPLPS distribution.  相似文献   

10.
Many if not most lifetime distributions are motivated only by mathematical interest. Here, a new three-parameter distribution motivated mainly by lifetime issues is introduced. Some properties of the new distribution including estimation procedures, univariate generalizations and bivariate generalizations are derived. Two real data applications are described to show superior performance versus some known lifetime models.  相似文献   

11.
Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.  相似文献   

12.
For the first time, a five-parameter distribution, called the Kumaraswamy Burr XII (KwBXII) distribution, is defined and studied. The new distribution contains as special models some well-known distributions discussed in lifetime literature, such as the logistic, Weibull and Burr XII distributions, among several others. We obtain the complete moments, incomplete moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves and reliability of the KwBXII distribution. We provide two representations for the moments of the order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the KwBXII distribution. Three applications to real data sets demonstrate the usefulness of the proposed distribution and that it may attract wider applications in lifetime data analysis.  相似文献   

13.
In the study of reliability of the technical systems and subsystems, parallel systems play a very important role. In the present paper, we consider a parallel system consisting of n identical components with independent lifetimes having a common distribution function F. It is assumed that at time t the system has failed. Under these conditions, we obtain the mean past lifetime (MPL) of the components of the system. Some properties of MPL are studied. It is shown that the underlying distribution function F can be recovered from the proposed MPL. Also, a comparison between two parallel systems are made based on their MPLs in the case where the components of the system are ordered in terms of reversed hazard rate. Finally a characterization of the uniform distribution is given based on MPL.  相似文献   

14.
Many if not most lifetime distributions are motivated only by mathematical interest. Here, a new three-parameter distribution motivated mainly by lifetime issues is introduced. Some properties of the new distribution including estimation procedures, univariate generalizations and bivariate generalizations are derived. A real data application is described to show its superior performance versus at least that of 15 of the known lifetime models.  相似文献   

15.
We investigate a Bayesian inference in the three-parameter bathtub-shaped lifetime distribution which is obtained by adding a power parameter to the two-parameter bathtub-shaped lifetime distribution suggested by Chen (2000). The Bayes estimators under the balanced squared error loss function are derived for three parameters. Then, we have used Lindley's and Tierney–Kadane approximations (see Lindley 1980; Tierney and Kadane 1986) for computing these Bayes estimators. In particular, we propose the explicit form of Lindley's approximation for the model with three parameters. We also give applications with a simulated data set and two real data sets to show the use of discussed computing methods. Finally, concluding remarks are mentioned.  相似文献   

16.
In this paper, we introduce classical and Bayesian approaches for the Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data. This distribution is considered for the analysis of bivariate lifetime as an alternative to some existing bivariate lifetime distributions assuming continuous lifetimes as the Block and Basu or Marshall and Olkin bivariate distributions. Maximum likelihood and Bayesian estimators are presented. Two examples are considered to illustrate the proposed methodology: an example with simulated data and an example with medical bivariate lifetime data.  相似文献   

17.
In this paper, a new five-parameter lifetime distribution called beta generalized linear exponential distribution (BGLED) is introduced. It includes at least 17 popular sub-models as special cases such as the beta linear exponential, the beta generalized exponential, and the exponentiated generalized linear distributions. Mathematical and statistical properties of the proposed distribution are discussed in details. In particular, explicit expression for the density function, moments, asymptotics distributions for sample extreme statistics, and other statistical measures are obtained. The estimation of the parameters by the method of maximum-likelihood is discussed and the finite sample properties of the maximum-likelihood estimators (MLEs) are investigated numerically. A real data set is used to demonstrate its superior performance fit over several existing popular lifetime models.  相似文献   

18.
Generalized exponential distributions   总被引:8,自引:0,他引:8  
The three-parameter gamma and three-parameter Weibull distributions are commonly used for analysing any lifetime data or skewed data. Both distributions have several desirable properties, and nice physical interpretations. Because of the scale and shape parameters, both have quite a bit of flexibility for analysing different types of lifetime data. They have increasing as well as decreasing hazard rate depending on the shape parameter. Unfortunately both distributions also have certain drawbacks. This paper considers a three-parameter distribution which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar, Srivastava & Freimer (1995) when the location parameter is not present. The study examines different properties of this model and observes that this family has some interesting features which are quite similar to those of the gamma family and the Weibull family, and certain distinct properties also. It appears this model can be used as an alternative to the gamma model or the Weibull model in many situations. One dataset is provided where the three-parameter generalized exponential distribution fits better than the three-parameter Weibull distribution or the three-parameter gamma distribution.  相似文献   

19.
The exponential and Rayleigh are the two most commonly used distributions for analyzing lifetime data. These distributions have several desirable properties and nice physical interpretations. Unfortunately, the exponential distribution only has constant failure rate and the Rayleigh distribution has increasing failure rate. The linear failure rate distribution generalizes both these distributions which may have non increasing hazard function also. This article introduces a new distribution, which generalizes linear failure rate distribution. This distribution generalizes the well-known (1) exponential distribution, (2) linear failure rate distribution, (3) generalized exponential distribution, and (4) generalized Rayleigh distribution. The properties of this distribution are discussed in this article. The maximum likelihood estimates of the unknown parameters are obtained. A real data set is analyzed and it is observed that the present distribution can provide a better fit than some other very well-known distributions.  相似文献   

20.
Measure of uncertainty in past lifetime distribution plays an important role in the context of Information Theory, Forensic Science and other related fields. In this paper we provide characterizations of quite a few continuous and discrete distributions based on certain functional relationships among past entropy, reversed hazard rate and expected inactivity time. Based on past entropy, a conditional measure of uncertainty has been defined, which has helped in defining a new stochastic order and an ageing class. The properties of the stochastic order and those of the ageing class are also studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号