首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residual control charts are frequently used for monitoring autocorrelated processes. In the design of a residual control chart, values of the true process parameters are often estimated from a reference sample of in-control observations by using least squares (LS) estimators. We propose a robust control chart for autocorrelated data by using Modified Maximum Likelihood (MML) estimators in constructing a residual control chart. Average run length (ARL) is simulated for the proposed chart when the underlying process is AR(1). The results show the superiority of the new chart under several situations. Moreover, the chart is robust to plausible deviations from assumed distribution of errors.  相似文献   

2.
Shewhart and EWMA control charts can be suitably combined to obtain a simple monitoring scheme sensitive to both large and small shifts in the process mean. So far, the performance of the combined Shewhart–EWMA (CSEWMA) has been investigated under the assumption that the process parameters are known. However, parameters are often estimated from reference Phase I samples. Since chart performances may be even largely affected by estimation errors, we study the behaviour of the CSEWMA with estimated parameters in both in- and out-of-control situations. Comparisons with standard Shewhart and EWMA charts are presented. Recommendations are given for Phase I sample size requirements necessary to achieve desired in-control performance.  相似文献   

3.
Traditionally, using a control chart to monitor a process assumes that process observations are normally and independently distributed. In fact, for many processes, products are either connected or autocorrelated and, consequently, obtained observations are autocorrelative rather than independent. In this scenario, applying an independence assumption instead of autocorrelation for process monitoring is unsuitable. This study examines a generally weighted moving average (GWMA) with a time-varying control chart for monitoring the mean of a process based on autocorrelated observations from a first-order autoregressive process (AR(1)) with random error. Simulation is utilized to evaluate the average run length (ARL) of exponentially weighted moving average (EWMA) and GWMA control charts. Numerous comparisons of ARLs indicate that the GWMA control chart requires less time to detect various shifts at low levels of autocorrelation than those at high levels of autocorrelation. The GWMA control chart is more sensitive than the EWMA control chart for detecting small shifts in a process mean.  相似文献   

4.
In this article, a transformation method using the principal component analysis approach is first applied to remove the existing autocorrelation within each profile in Phase I monitoring of autocorrelated simple linear profiles. This easy-to-use approach is independent of the autocorrelation coefficient. Moreover, since it is a model-free method, it can be used for Phase I monitoring procedures. Then, five control schemes are proposed to monitor the parameters of the profile with uncorrelated error terms. The performances of the proposed control charts are evaluated and are compared through simulation experiments based on different values of autocorrelation coefficient as well as different shift scenarios in the parameters of the profile in terms of probability of receiving an out-of-control signal.  相似文献   

5.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for the shape parameter β of Weibull processes. The chart is based on a moving range when a single measurement is taken per sampling period. We consider both one-sided (lower-sided and upper-sided) and two-sided control charts. We perform simulations to estimate control limits that achieve a specified average run length (ARL) when the process is in control. The control limits we derive are ARL unbiased in that they result in ARL that is shorter than the stable-process ARL when β has shifted. We also perform simulations to determine Phase I sample size requirements if control limits are based on an estimate of β. We compare the ARL performance of the proposed chart to that of the moving range chart proposed in the literature.  相似文献   

6.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

7.
Quality control chart interpretation is usually based on the assumption that successive observations are independent over time. In this article we show the effect of autocorrelation on the retrospective Shewhart chart for individuals, often referred to as the X-chart, with the control limits based on moving ranges. It is shown that the presence of positive first lag autocorrelation results in an increased number of false alarms from the control chart. Negative first lag autocorrelation can result in unnecessarily wide control limits such that significant shifts in the process mean may go undetected. We use first-order autoregressive and first-order moving average models in our simulation of small samples of autocorrelated data.  相似文献   

8.
In the design of control charts, it is usually assumed that process parameters are known. However, in many practical applications the values of these parameters are unknown and should be estimated using historical in-control process observations. In this study, the performance of adaptive c-chart with estimated parameter is evaluated. It is demonstrated that by increasing the size and the number of samples in estimating the process parameter, the performance of the chart converges to that of the known parameter case. Finally the best phase I sampling scenarios are presented to make the chart with the estimated parameter perform as well as the chart with the known parameter.  相似文献   

9.
Control charts designed for the properties of non conformities, also called p control charts, are powerful tools used for monitoring a performance of the fraction of non conforming units. Constructing a p chart is often based on the assumption that the in-control proportion of non conforming items (p 0) is known. In practice, the value of p 0 is rarely known and is frequently replaced by an estimate from an in-control reference sample in Phase I. This article investigates the effects of sample sizes in both Phase I and Phase II on the performance of p control charts. The conditional and marginal run length distributions are derived and the corresponding numerical studies are conducted. Moreover, the minimal sample sizes required in Phases I and II to ensure adequate statistical performance are proposed when p 0 = 0.1 and 0.005.  相似文献   

10.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

11.
The exponentially weighted moving average (EWMA) chart is often designed assuming the process parameters are known. In practice, the parameters are rarely known and need to be estimated from Phase I samples. Different Phase I samples are used when practitioners construct their own control chart's limits, which leads to the “Phase I between-practitioners” variability in the in-control average run length (ARL) of control charts. The standard deviation of the ARL (SDARL) is a good alternative to quantify this variability in control charts. Based on the SDARL metric, the performance of the EWMA median chart with estimated parameters is investigated in this paper. Some recommendations are given based on the SDARL metric. The results show that the EWMA median chart requires a much larger amount of Phase I data in order to reduce the variation in the in-control ARL up to a reasonable level. Due to the limitation of the amount of the Phase I data, the suggested EWMA median chart is designed with the bootstrap method which provides a good balance between the in-control and out-of-control ARL values.  相似文献   

12.
Self-starting control charts have been proposed in the literature to allow process monitoring when only a small amount of relevant data is available. In fact, self-starting charts are useful in monitoring a process quickly, without having to collect a sizable Phase I sample for estimating the in-control process parameters. In this paper, a new self-starting control charting procedure is proposed in which first an effective initial sample is chosen from the perspective of Six Sigma quality, then the successive sample means are either pooled or not pooled (sometimes pooling procedure) for computing next Q-statistics depending upon its signal. It is observed that the sample statistics obtained so from this in-control Phase I situation can serve as more efficient estimators of unknown parameters for Phase II monitoring. An example is considered to illustrate the construction of the proposed chart and to compare its performance with the existing ones.  相似文献   

13.
Control charts are widely used for monitoring quality characteristics of high-yield processes. In such processes where a large number of zero observations exists in count data, the zero-inflated binomial (ZIB) models are more appropriate than the ordinary binomial models. In ZIB models, random shocks occur with probability θ, and upon the occurrence of random shocks, the number of non-conforming items in a sample of size n follows the binomial distribution with proportion p. In the present article, we study in more detail the exponentially weighted moving average control chart based on ZIB distribution (ZIB-EWMA) and we also propose a new control chart based on the double exponentially weighted moving average statistic for monitoring ZIB data (ZIB-DEWMA). The two control charts are studied in detecting upward shifts in θ or p individually, as well as in both parameters simultaneously. Through a simulation study, we compare the performance of the proposed chart with the ZIB-Shewhart, ZIB-EWMA and ZIB-CUSUM charts. Finally, an illustrative example is also presented to display the practical application of the ZIB charts.  相似文献   

14.
ABSTRACT

In this paper, we propose a control chart to monitor the Weibull shape parameter where the observations are censored due to competing risks. We assume that the failure occurs due to two competing risks that are independent and follow Weibull distribution with different shape and scale parameters. The control charts are proposed to monitor one or both of the shape parameters of competing risk distributions and established based on the conditional expected values. The proposed control chart for both shape parameters is used in certain situations and allows to monitor both shape parameters in only one chart. The control limits depend on the sample size, number of failures due to each risk and the desired stable average run length (ARL). We also consider the estimation problem of the target parameters when the Phase I sample is incomplete. We assumed that some of the products that fail during the life testing have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the expectation-maximization (EM) algorithm is proposed to estimate the parameters. For both cases, with and without masking, the behaviour of ARLs of charts is studied through the numerical methods. The influence of masking on the performance of proposed charts is also studied through a simulation study. An example illustrates the applicability of the proposed charts.  相似文献   

15.
ABSTRACT

Zero-inflated probability models are used to model count data that have an excessive number of zeros. Shewhart-type control charts have been proposed for the monitoring of zero-inflated processes. Usually their performance is evaluated under the assumption of known process parameters. However, in practice, their values are rarely known and they have to be estimated from an in-control historical Phase I sample. In the present paper, we investigate the performance of Shewhart-type control charts for zero-inflated processes with estimated parameters and propose practical guidelines for the statistical design of the examined charts, when the size of the preliminary sample is predetermined.  相似文献   

16.
This paper develops a Bayesian control chart for the percentiles of the Weibull distribution, when both its in‐control and out‐of‐control parameters are unknown. The Bayesian approach enhances parameter estimates for small sample sizes that occur when monitoring rare events such as in high‐reliability applications. The chart monitors the parameters of the Weibull distribution directly, instead of transforming the data as most Weibull‐based charts do in order to meet normality assumption. The chart uses accumulated knowledge resulting from the likelihood of the current sample combined with the information given by both the initial prior knowledge and all the past samples. The chart is adapting because its control limits change (e.g. narrow) during Phase I. An example is presented and good average run length properties are demonstrated.  相似文献   

17.
CUSUM control chart has been widely used for monitoring the process variance. It is usually used assuming that the nominal process variance is known. However, several researchers have shown that the ability of control charts to signal when a process is out of control is seriously affected unless process parameters are estimated from a large in-control Phase I data set. In this paper we derive the run length properties of a CUSUM chart for monitoring dispersion with estimated process variance and we evaluate the performance of this chart by comparing it with the same chart but with assumed known process parameters.  相似文献   

18.
A common approach to building control charts for autocorrelated data is to apply classical SPC to the residuals from a time series model of the process. However, Shewhart charts and even CUSUM charts are less sensitive to small shifts in the process mean when applied to residuals than when applied to independent data. Using an approximate analytical model, we show that the average run length of a CUSUM chart for residuals can be reduced substantially by modifying traditional chart design guidelines to account for the degree of autocorrelation in the data.  相似文献   

19.
Non parametric control charts have received increasing attention in the field of statistical process control. This paper presents a non parametric double generally weighted moving average (DGWMA) sign chart for monitoring small deviations when the quality characteristics of a process are unknown. The statistical performance of the non parametric DGWMA sign chart is evaluated and compared with those of other charts, including the exponentially weighted moving average (EWMA), generally weighted moving average (GWMA), and double EWMA (DEWMA) sign charts. Simulation studies indicate that the non parametric DGWMA sign chart with a large design and median adjustment parameters is always more sensitive than other charts in detecting small changes.  相似文献   

20.
This paper discusses the development of a multivariate control charting technique for short-run autocorrelated data manufacturing environment. The proposed approach is a combination of the multivariate residual charts for autocorrelated data and the multivariate transformation technique for i.i.d. process observations of short lengths. The proposed approach consists in fitting adequate multivariate time-series model of various process outputs and computes the residuals, transforming them into standard normal N(0, 1) data and then using standardized data as inputs to plot conventional univariate i.i.d. control charts. The objective for applying multivariate finite horizon techniques for autocorrelated processes is to allow continuous process monitoring, since all process outputs are controlled trough the use of a single control chart with constant control limits. Throughout simulated examples, it is shown that the proposed short-run process monitoring technique provides approximately similar shifts detection properties as VAR residual charts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号