首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Count data with structural zeros are common in public health applications. There are considerable researches focusing on zero-inflated models such as zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) models for such zero-inflated count data when used as response variable. However, when such variables are used as predictors, the difference between structural and random zeros is often ignored and may result in biased estimates. One remedy is to include an indicator of the structural zero in the model as a predictor if observed. However, structural zeros are often not observed in practice, in which case no statistical method is available to address the bias issue. This paper is aimed to fill this methodological gap by developing parametric methods to model zero-inflated count data when used as predictors based on the maximum likelihood approach. The response variable can be any type of data including continuous, binary, count or even zero-inflated count responses. Simulation studies are performed to assess the numerical performance of this new approach when sample size is small to moderate. A real data example is also used to demonstrate the application of this method.  相似文献   

2.
In recent years, zero-inflated count data models, such as zero-inflated Poisson (ZIP) models, are widely used as the count data with extra zeros are very common in many practical problems. In order to model the correlated count data which are either clustered or repeated and to assess the effects of continuous covariates or of time scales in a flexible way, a class of semiparametric mixed-effects models for zero-inflated count data is considered. In this article, we propose a fully Bayesian inference for such models based on a data augmentation scheme that reflects both random effects of covariates and mixture of zero-inflated distribution. A computational efficient MCMC method which combines the Gibbs sampler and M-H algorithm is implemented to obtain the estimate of the model parameters. Finally, a simulation study and a real example are used to illustrate the proposed methodologies.  相似文献   

3.
The zero-inflated regression models such as zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) or zero-inflated generalized Poisson (ZIGP) regression models can model the count data with excess zeros. The ZINB model can handle over-dispersed and the ZIGP model can handle the over or under-dispersed count data with excess zeros as well. Moreover, the count data may be correlated because of data collection procedure or special study design. The clustered sampling approach is one of the examples in which the correlation among subjects could be defined. In such situations, a marginal model using generalized estimating equation (GEE) approach can incorporate these correlations and lead up to the relationships at the population level. In this study, the GEE-based zero-inflated generalized Poisson regression model was proposed to fit over and under-dispersed clustered count data with excess zeros.  相似文献   

4.
Count data have emerged in many applied research areas. In recent years, there has been a considerable interest in models for count data. In modelling such data, it is common to face a large frequency of zeroes. The data are regarded as zero-inflated when the frequency of observed zeroes is larger than what is expected from a theoretical distribution such as Poisson distribution, as a standard model for analysing count data. Data analysis, using the simple Poisson model, may lead to over-dispersion. Several classes of different mixture models were proposed for handling zero-inflated data. But they do not apply to cases when inflated counts happen at some other points, in addition to zero. In these cases, a doubly-inflated Poisson model has been suggested which only be used for cross-sectional data and cannot consider correlations between observations. However, correlated count data have a large application, especially in the health and medical fields. The present study aims to introduce a Doubly-Inflated Poisson models with random effect for correlated doubly-inflated data. Then, the best performance of the proposed method is shown via different simulation scenarios. Finally, the proposed model is applied to a dental study.KEYWORDS: Count data, doubly-inflated, Poisson regression, zero-inflated, correlated data  相似文献   

5.
For count responses, there are situations in biomedical and sociological applications in which extra zeroes occur. Modeling correlated (e.g. repeated measures and clustered) zero-inflated count data includes special challenges because the correlation between measurements for a subject or a cluster needs to be taken into account. Moreover, zero-inflated count data are often faced with over/under dispersion problem. In this paper, we propose a random effect model for repeated measurements or clustered data with over/under dispersed response called random effect zero-inflated exponentiated-exponential geometric regression model. The proposed method was illustrated through real examples. The performance of the model and asymptotical properties of the estimations were investigated using simulation studies.KEYWORDS: Count model, under- and over-dispersion, zero-inflation, mixture model, zero-inflated poisson model  相似文献   

6.
In this study, estimation of the parameters of the zero-inflated count regression models and computations of posterior model probabilities of the log-linear models defined for each zero-inflated count regression models are investigated from the Bayesian point of view. In addition, determinations of the most suitable log-linear and regression models are investigated. It is known that zero-inflated count regression models cover zero-inflated Poisson, zero-inflated negative binomial, and zero-inflated generalized Poisson regression models. The classical approach has some problematic points but the Bayesian approach does not have similar flaws. This work points out the reasons for using the Bayesian approach. It also lists advantages and disadvantages of the classical and Bayesian approaches. As an application, a zoological data set, including structural and sampling zeros, is used in the presence of extra zeros. In this work, it is observed that fitting a zero-inflated negative binomial regression model creates no problems at all, even though it is known that fitting a zero-inflated negative binomial regression model is the most problematic procedure in the classical approach. Additionally, it is found that the best fitting model is the log-linear model under the negative binomial regression model, which does not include three-way interactions of factors.  相似文献   

7.
王芝皓等 《统计研究》2021,38(7):127-139
在实际数据分析中经常会遇到零膨胀计数数据作为响应变量与函数型随机变量和随机向量作为预测变量相关联。本文考虑函数型部分变系数零膨胀模型 (FPVCZIM),模型中无穷维的斜率函数用函数型主成分基逼近,系数函数用B-样条进行拟合。通过EM 算法得到估计量,讨论其理论性质,在一些正则条件下获得了斜率函数和系数函数估计量的收敛速度。有限样本的Monte Carlo 模拟研究和真实数据分析被用来解释本文提出的方法。  相似文献   

8.
We describe a mixed-effect hurdle model for zero-inflated longitudinal count data, where a baseline variable is included in the model specification. Association between the count data process and the endogenous baseline variable is modeled through a latent structure, assumed to be dependent across equations. We show how model parameters can be estimated in a finite mixture context, allowing for overdispersion, multivariate association and endogeneity of the baseline variable. The model behavior is investigated through a large-scale simulation experiment. An empirical example on health care utilization data is provided.  相似文献   

9.
This article proposes a variable selection approach for zero-inflated count data analysis based on the adaptive lasso technique. Two models including the zero-inflated Poisson and the zero-inflated negative binomial are investigated. An efficient algorithm is used to minimize the penalized log-likelihood function in an approximate manner. Both the generalized cross-validation and Bayesian information criterion procedures are employed to determine the optimal tuning parameter, and a consistent sandwich formula of standard errors for nonzero estimates is given based on local quadratic approximation. We evaluate the performance of the proposed adaptive lasso approach through extensive simulation studies, and apply it to analyze real-life data about doctor visits.  相似文献   

10.
Zero-inflated data are more frequent when the data represent counts. However, there are practical situations in which continuous data contain an excess of zeros. In these cases, the zero-inflated Poisson, binomial or negative binomial models are not suitable. In order to reduce this gap, we propose the zero-spiked gamma-Weibull (ZSGW) model by mixing a distribution which is degenerate at zero with the gamma-Weibull distribution, which has positive support. The model attempts to estimate simultaneously the effects of explanatory variables on the response variable and the zero-spiked. We consider a frequentist analysis and a non-parametric bootstrap for estimating the parameters of the ZSGW regression model. We derive the appropriate matrices for assessing local influence on the model parameters. We illustrate the performance of the proposed regression model by means of a real data set (copaiba oil resin production) from a study carried out at the Department of Forest Science of the Luiz de Queiroz School of Agriculture, University of São Paulo. Based on the ZSGW regression model, we determine the explanatory variables that can influence the excess of zeros of the resin oil production and identify influential observations. We also prove empirically that the proposed regression model can be superior to the zero-adjusted inverse Gaussian regression model to fit zero-inflated positive continuous data.  相似文献   

11.
Determining the effectiveness of different treatments from observational data, which are characterized by imbalance between groups due to lack of randomization, is challenging. Propensity matching is often used to rectify imbalances among prognostic variables. However, there are no guidelines on how appropriately to analyze group matched data when the outcome is a zero-inflated count. In addition, there is debate over whether to account for correlation of responses induced by matching and/or whether to adjust for variables used in generating the propensity score in the final analysis. The aim of this research is to compare covariate unadjusted and adjusted zero-inflated Poisson models that do and do not account for the correlation. A simulation study is conducted, demonstrating that it is necessary to adjust for potential residual confounding, but that accounting for correlation is less important. The methods are applied to a biomedical research data set.  相似文献   

12.
Although count data are often collected in social, psychological, and epidemiological surveys in grouped and right-censored categories, there is a lack of statistical methods simultaneously taking both grouping and right-censoring into account. In this research, we propose a new generalized Poisson-multinomial mixture approach to model grouped and right-censored (GRC) count data. Based on a mixed Poisson-multinomial process for conceptualizing grouped and right-censored count data, we prove that the new maximum-likelihood estimator (MLE-GRC) is consistent and asymptotically normally distributed for both Poisson and zero-inflated Poisson models. The use of the MLE-GRC, implemented in an R function, is illustrated by both statistical simulation and empirical examples. This research provides a tool for epidemiologists to estimate incidence from grouped and right-censored count data and lays a foundation for regression analyses of such data structure.  相似文献   

13.
胡亚南  田茂再 《统计研究》2019,36(1):104-114
零膨胀计数数据破坏了泊松分布的方差-均值关系,可由取值服从泊松分布的数据和取值为零(退化分布)的数据各占一定比例所构成的混合分布所解释。本文基于自适应弹性网技术, 研究了零膨胀计数数据的联合建模及变量选择问题.对于零膨胀泊松分布,引入潜变量,构造出零膨胀泊松模型的完全似然, 其中由零膨胀部分和泊松部分两项组成.考虑到协变量可能存在共线性和稀疏性,通过对似然函数加自适应弹性网惩罚得到目标函数,然后利用EM算法得到回归系数的稀疏估计量,并用贝叶斯信息准则BIC来确定最优调节参数.本文也给出了估计量的大样本性质的理论证明和模拟研究,最后把所提出的方法应用到实际问题中。  相似文献   

14.
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.  相似文献   

15.
Zero-inflated count models are increasingly employed in many fields in case of “zero-inflation”. In modeling road traffic crashes, it has also shown to be useful in obtaining a better model-fitting when zero crash counts are over-presented. However, the general specification of zero-inflated model can not account for the multilevel data structure in crash data, which may be an important source of over-dispersion. This paper examines zero-inflated Poisson regression with site-specific random effects (REZIP) with comparison to random effect Poisson model and standard zero-inflated poison model. A practical and flexible procedure, using Bayesian inference with Markov Chain Monte Carlo algorithm and cross-validation predictive density techniques, is applied for model calibration and suitability assessment. Using crash data in Singapore (1998–2005), the illustrative results demonstrate that the REZIP model may significantly improve the model-fitting and predictive performance of crash prediction models. This improvement can contribute to traffic safety management and engineering practices such as countermeasure design and safety evaluation of traffic treatments.  相似文献   

16.
Overdispersion due to a large proportion of zero observations in data sets is a common occurrence in many applications of many fields of research; we consider such scenarios in count panel (longitudinal) data. A well-known and widely implemented technique for handling such data is that of random effects modeling, which addresses the serial correlation inherent in panel data, as well as overdispersion. To deal with the excess zeros, a zero-inflated Poisson distribution has come to be canonical, which relaxes the equal mean-variance specification of a traditional Poisson model and allows for the larger variance characteristic of overdispersed data. A natural proposal then to approach count panel data with overdispersion due to excess zeros is to combine these two methodologies, deriving a likelihood from the resulting conditional probability. In performing simulation studies, we find that this approach in fact poses problems of identifiability. In this article, we construct and explain in full detail why a model obtained from the marriage of two classical and well-established techniques is unidentifiable and provide results of simulation studies demonstrating this effect. A discussion on alternative methodologies to resolve the problem is provided in the conclusion.  相似文献   

17.
This paper introduces several forms of nested bivariate zero-inflated generalized Poisson (BZIGP) regression model which can be fitted to bivariate and zero-inflated count data. The main advantage of having several forms of BZIGP regression model is that they are nested and allow likelihood ratio test to be performed for choosing the best model. In addition, the BZIGP regression models have flexible forms of marginal mean–variance relationship, can be fitted to bivariate and zero-inflated count data with positive or negative correlations, and allow additional overdispersion of the two response variables. The BZIGP regression models are fitted to the Australian Health Survey data.  相似文献   

18.
The generalized Poisson (GP) regression model has been used to model count data that exhibit over-dispersion or under-dispersion. The zero-inflated GP (ZIGP) regression model can additionally handle count data characterized by many zeros. However, the parameters of ZIGP model cannot easily be used for inference on overall exposure effects. In order to address this problem, a marginalized ZIGP is proposed to directly model the population marginal mean count. The parameters of the marginalized zero-inflated GP model are estimated by the method of maximum likelihood. The regression model is illustrated by three real-life data sets.  相似文献   

19.
This paper presents a new model that monitors the basic network formation mechanisms via the attributes through time. It considers the issue of joint modeling of longitudinal inflated (0, 1)-support continuous and inflated count response variables. For joint model of mentioned response variables, a correlated generalized linear mixed model is studied. The fraction response is inflated in two points k and l (k < l) and a k and l inflated beta distribution is introduced to use as its distribution. Also, the count response is inflated in zero and we use some members of zero-inflated power series distributions, hurdle-at-zero, members of zero-inflated double power series distributions and zero-inflated generalized Poisson distribution as our count response distribution. A full likelihood-based approach is used to yield maximum likelihood estimates of the model parameters and the model is applied to a real social network obtained from an observational study where the rate of the ith node’s responsiveness to the jth node and the number of arrows or edges with some specific characteristics from the ith node to the jth node are the correlated inflated (0, 1)-support continuous and inflated count response variables, respectively. The effect of the sender and receiver positions in an office environment on the responses are investigated simultaneously.  相似文献   

20.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号