首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of local linear estimation of the regression function when the regressor is functional. The main result of this paper is to prove the strong convergence (with rates), uniformly in bandwidth parameters (UIB), of the considered estimator. The main interest of this result is the possibility to derive the asymptotic properties of our estimate even if the bandwidth parameter is a random variable.  相似文献   

2.
    
In this paper, we investigate the k-nearest neighbours (kNN) estimation of nonparametric regression model for strong mixing functional time series data. More precisely, we establish the uniform almost complete convergence rate of the kNN estimator under some mild conditions. Furthermore, a simulation study and an empirical application to the real data analysis of sea surface temperature (SST) are carried out to illustrate the finite sample performances and the usefulness of the kNN approach.  相似文献   

3.
Let X1,., Xn, be i.i.d. random variables with distribution function F, and let Y1,.,.,Yn be i.i.d. with distribution function G. For i = 1, 2,.,., n set δi, = 1 if Xi ≤ Yi, and 0 otherwise, and Xi, = min{Xi, Ki}. A kernel-type density estimate of f, the density function of F w.r.t. Lebesgue measure on the Borel o-field, based on the censored data (δi, Xi), i = 1,.,.,n, is considered. Weak and strong uniform consistency properties over the whole real line are studied. Rates of convergence results are established under higher-order differentiability assumption on f. A procedure for relaxing such assumptions is also proposed.  相似文献   

4.
5.
Abstract

This paper deals with the problem of estimating the regression of a surrogated scalar response variable given a functional random one. We construct an estimator of the regression operator by using, in addition to the available (true) response data, a surrogate data. We then establish some asymptotic properties of the constructed estimator in terms of the almost-complete and the quadratic mean convergences. Notice that the obtained results generalize a part of the results obtained in the finite dimensional framework. Finally, an illustration on the applicability of our results on both simulated data and a real dataset was realized. We have thus shown the superiority of our estimator on classical estimators when we are lacking complete data.  相似文献   

6.
    
The aim of this article is to study the k-nearest neighbour (kNN) method in nonparametric functional regression. We present asymptotic properties of the kNN kernel estimator: the almost-complete convergence and its rate. Then, we illustrate the effectiveness of this method by comparing it with the traditional kernel approach first on simulated datasets and then on a real chemometrical example. We also present in this article an important technical tool which could be useful in many other situations than ours.  相似文献   

7.
Xing-Cai Zhou 《Statistics》2013,47(3):521-534
An inherent characteristic of longitudinal data is the dependence among the observations within the same subject. For exhibiting dependencies among the observations within the same subject, this paper considers a semiparametric partially linear regression model for longitudinal data based on martingale difference error's structure. We establish a strong consistency for the least squares estimator of a parametric component and the estimator of a non-parametric function under some mild conditions. A simulation study shows the performance of the proposed estimator in finite samples.  相似文献   

8.
Härdle & Marron (1990) treated the problem of semiparametric comparison of nonparametric regression curves by proposing a kernel-based estimator derived by minimizing a version of weighted integrated squared error. The resulting estimators of unknown transformation parameters are n-consistent, which prompts a consideration of issues. of optimality. We show that when the unknown mean function is periodic, an optimal nonparametric estimator may be motivated by an elegantly simple argument based on maximum likelihood estimation in a parametric model with normal errors. Strikingly, the asymptotic variance of an optimal estimator of θ does not depend at all on the manner of estimating error variances, provided they are estimated n-consistently. The optimal kernel-based estimator derived via these considerations is asymptotically equivalent to a periodic version of that suggested by Härdle & Marron, and so the latter technique is in fact optimal in this sense. We discuss the implications of these conclusions for the aperiodic case.  相似文献   

9.
This study considers the binary classification of functional data collected in the form of curves. In particular, we assume a situation in which the curves are highly mixed over the entire domain, so that the global discriminant analysis based on the entire domain is not effective. This study proposes an interval-based classification method for functional data: the informative intervals for classification are selected and used for separating the curves into two classes. The proposed method, called functional logistic regression with fused lasso penalty, combines the functional logistic regression as a classifier and the fused lasso for selecting discriminant segments. The proposed method automatically selects the most informative segments of functional data for classification by employing the fused lasso penalty and simultaneously classifies the data based on the selected segments using the functional logistic regression. The effectiveness of the proposed method is demonstrated with simulated and real data examples.  相似文献   

10.
Consider a regression model where the regression function is the sum of a linear and a nonparametric component. Assuming that the errors of the model follow a stationary strong mixing process with mean zero, the problem of bandwidth selection for a kernel estimator of the nonparametric component is addressed here. We obtain an asymptotic expression for an optimal band-width and we propose to use a plug-in methodology in order to estimate this bandwidth through preliminary estimates of the unknown quantities. Asymptotic optimality for the plug-in bandwidth is established.  相似文献   

11.
In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz–Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.  相似文献   

12.
    
Sparsity-inducing penalties are useful tools for variable selection and are also effective for regression problems where the data are functions. We consider the problem of selecting not only variables but also decision boundaries in multiclass logistic regression models for functional data, using sparse regularization. The parameters of the functional logistic regression model are estimated in the framework of the penalized likelihood method with the sparse group lasso-type penalty, and then tuning parameters for the model are selected using the model selection criterion. The effectiveness of the proposed method is investigated through simulation studies and the analysis of a gene expression data set.  相似文献   

13.
    
We study a class of semiparametric likelihood models in which parameters are incorporated explicitly, with the unknown likelihood specified nonparametrically by the kernel estimator. The maximum likelihood estimator (MLE) under this semiparametric model is used for inference of the parameters. The method is a generalisation of the semiparametric regression model we proposed recently. Such semiparametric models are robust, and MLEs under these likelihoods are shown to be consistent, asymptotic normal with rate √n and possess Wilks property.  相似文献   

14.
15.
    
In this paper we propose a Bayesian semiparametric regression model to estimate and test the effect of a genetic pathway on prostate‐specific antigen (PSA) measurements for patients with prostate cancer. The underlying functional relationship between the genetic pathway and PSA is modeled using reproducing kernel Hilbert space (RKHS) theory. The RKHS formulation makes our model highly flexible, which can capture the complex multidimensional relationship between the genes in a genetic pathway and the response. Moreover, the higher order and nonlinear interactions among the genes in a pathway are also automatically modeled through our kernel‐based representation. We illustrate the connection between our semiparametric regression based on RKHS and a linear mixed model by choosing a special prior distribution on the model parameters. To test the significance of a genetic pathway toward the phenotypic response like PSA, we propose a Bayesian hypothesis testing scheme based on the Bayes factor. An efficient Markov chain Monte Carlo algorithm is designed to estimate the model parameters, Bayes factors, and the genetic pathway effect simultaneously. We illustrate the effectiveness of our model by five simulation studies and one real prostate cancer gene expression data analysis.  相似文献   

16.
In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.  相似文献   

17.
    
Function‐on‐function regression refers to the situation where both independent and dependent variables in a regression model are of functional nature. Functional concurrent regression is a specific type of function‐on‐function regression that relates the response function at a specific point to the covariate value at that point and the point itself. Standard functional concurrent models are linear (a linear combination of the covariates is used), and often criticized due to their linearity assumption and lack of flexibility. This gives rise to nonparametric functional concurrent regression that models the response function at a specific point using a multivariate nonparametric function of both the point and the covariate value at that point. Such models allow for much more flexibility and predictive accuracy, especially when the underlying relationship is nonlinear. In the past decade, several methods have been proposed to perform estimation, prediction and inference in the nonparametric concurrent models using various methods such as spline smoothing, Gaussian process regression and local polynomial kernel regression. Such models have been shown to be useful tools in functional regression as well as stepping stone for further development. WIREs Comput Stat 2017, 9:e1394. doi: 10.1002/wics.1394 This article is categorized under:
  • Statistical and Graphical Methods of Data Analysis > Nonparametric Methods
  相似文献   

18.
    
ABSTRACT

In this note, we consider the situation where we have a functional predictor as well as some more traditional scalar predictors, which we call the partially functional problem. We propose a semiparametric model based on sufficient dimension reduction, and thus our main interest is in dimension reduction although prediction can be carried out at a second stage. We establish root-n consistency of the linear part of the estimator. Some Monte Carlo studies are carried out as proof of concept.  相似文献   

19.
ABSTRACT

We present methods for modeling and estimation of a concurrent functional regression when the predictors and responses are two-dimensional functional datasets. The implementations use spline basis functions and model fitting is based on smoothing penalties and mixed model estimation. The proposed methods are implemented in available statistical software, allow the construction of confidence intervals for the bivariate model parameters, and can be applied to completely or sparsely sampled responses. Methods are tested to data in simulations and they show favorable results in practice. The usefulness of the methods is illustrated in an application to environmental data.  相似文献   

20.
    
We study regression using functional predictors in situations where these functions contains both phase and amplitude variability. In other words, the functions are misaligned due to errors in time measurements, and these errors can significantly degrade both model estimation and prediction performance. The current techniques either ignore the phase variability, or handle it via preprocessing, that is, use an off‐the‐shelf technique for functional alignment and phase removal. We develop a functional principal component regression model which has a comprehensive approach in handling phase and amplitude variability. The model utilizes a mathematical representation of the data known as the square‐root slope function. These functions preserve the norm under warping and are ideally suited for simultaneous estimation of regression and warping parameters. Using both simulated and real‐world data sets, we demonstrate our approach and evaluate its prediction performance relative to current models. In addition, we propose an extension to functional logistic and multinomial logistic regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号