首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The authors derive empirical likelihood confidence regions for the comparison distribution of two populations whose distributions are to be tested for equality using random samples. Another application they consider is to ROC curves, which are used to compare measurements of a diagnostic test from two populations. The authors investigate the smoothed empirical likelihood method for estimation in this context, and empirical likelihood based confidence intervals are obtained by means of the Wilks theorem. A bootstrap approach allows for the construction of confidence bands. The method is illustrated with data analysis and a simulation study.  相似文献   

2.
The authors develop empirical likelihood (EL) based methods of inference for a common mean using data from several independent but nonhomogeneous populations. For point estimation, they propose a maximum empirical likelihood (MEL) estimator and show that it is n‐consistent and asymptotically optimal. For confidence intervals, they consider two EL based methods and show that both intervals have approximately correct coverage probabilities under large samples. Finite‐sample performances of the MEL estimator and the EL based confidence intervals are evaluated through a simulation study. The results indicate that overall the MEL estimator and the weighted EL confidence interval are superior alternatives to the existing methods.  相似文献   

3.
In this article, we discuss the construction of the confidence intervals for distribution functions under negatively associated samples. It is shown that the blockwise empirical likelihood (EL) ratio statistic for a distribution function is asymptotically χ2-type distributed. The result is used to obtain an EL-based confidence interval for the distribution function.  相似文献   

4.
The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performance of two or more laboratory or diagnostic tests. In this paper, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric and the other one is non-parametric and both have missing data. After imputing missing values, we derive the semi-empirical likelihood ratio statistic and the corresponding likelihood equations. It is shown that the log-semi-empirical likelihood ratio statistic is asymptotically scaled chi-squared. The estimating equations are solved simultaneously to obtain the estimated lower and upper bounds of semi-empirical likelihood confidence intervals. We conduct extensive simulation studies to evaluate the finite sample performance of the proposed empirical likelihood confidence intervals with various sample sizes and different missing probabilities.  相似文献   

5.
Abstract. Non‐parametric regression models have been studied well including estimating the conditional mean function, the conditional variance function and the distribution function of errors. In addition, empirical likelihood methods have been proposed to construct confidence intervals for the conditional mean and variance. Motivated by applications in risk management, we propose an empirical likelihood method for constructing a confidence interval for the pth conditional value‐at‐risk based on the non‐parametric regression model. A simulation study shows the advantages of the proposed method.  相似文献   

6.
As new diagnostic tests are developed and marketed, it is very important to be able to compare the accuracy of a given two continuous‐scale diagnostic tests. An effective method to evaluate the difference between the diagnostic accuracy of two tests is to compare partial areas under the receiver operating characteristic curves (AUCs). In this paper, we review existing parametric methods. Then, we propose a new semiparametric method and a new nonparametric method to investigate the difference between two partial AUCs. For the difference between two partial AUCs under each method, we derive a normal approximation, define an empirical log‐likelihood ratio, and show that the empirical log‐likelihood ratio follows a scaled chi‐square distribution. We construct five confidence intervals for the difference based on normal approximation, bootstrap, and empirical likelihood methods. Finally, extensive simulation studies are conducted to compare the finite‐sample performances of these intervals, and a real example is used as an application of our recommended intervals. The simulation results indicate that the proposed hybrid bootstrap and empirical likelihood intervals outperform other existing intervals in most cases.  相似文献   

7.
Generalized partially linear varying-coefficient models (GPLVCM) are frequently used in statistical modeling. However, the statistical inference of the GPLVCM, such as confidence region/interval construction, has not been very well developed. In this article, empirical likelihood-based inference for the parametric components in the GPLVCM is investigated. Based on the local linear estimators of the GPLVCM, an estimated empirical likelihood-based statistic is proposed. We show that the resulting statistic is asymptotically non-standard chi-squared. By the proposed empirical likelihood method, the confidence regions for the parametric components are constructed. In addition, when some components of the parameter are of particular interest, the construction of their confidence intervals is also considered. A simulation study is undertaken to compare the empirical likelihood and the other existing methods in terms of coverage accuracies and average lengths. The proposed method is applied to a real example.  相似文献   

8.
Empirical Likelihood-based Inference in Linear Models with Missing Data   总被引:18,自引:0,他引:18  
The missing response problem in linear regression is studied. An adjusted empirical likelihood approach to inference on the mean of the response variable is developed. A non-parametric version of Wilks's theorem for the adjusted empirical likelihood is proved, and the corresponding empirical likelihood confidence interval for the mean is constructed. With auxiliary information, an empirical likelihood-based estimator with asymptotic normality is defined and an adjusted empirical log-likelihood function with asymptotic χ2 is derived. A simulation study is conducted to compare the adjusted empirical likelihood methods and the normal approximation methods in terms of coverage accuracies and average lengths of the confidence intervals. Based on biases and standard errors, a comparison is also made between the empirical likelihood-based estimator and related estimators by simulation. Our simulation indicates that the adjusted empirical likelihood methods perform competitively and the use of auxiliary information provides improved inferences.  相似文献   

9.
The Gini index and its generalizations have been used extensively for measuring inequality and poverty in the social sciences. Recently, interval estimation based on nonparametric statistics has been proposed in the literature, for example the naive bootstrap method, the iterated bootstrap method and the bootstrap method via a pivotal statistic. In this paper, we propose empirical likelihood methods to construct confidence intervals for the Gini index or the difference of two Gini indices. Simulation studies show that the proposed empirical likelihood method performs slightly worse than the bootstrap method based on a pivotal statistic in terms of coverage accuracy, but it requires less computation. However, the bootstrap calibration of the empirical likelihood method performs better than the bootstrap method based on a pivotal statistic.  相似文献   

10.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set.  相似文献   

11.
Empirical likelihood has attracted much attention in the literature as a nonparametric method. A recent paper by Lu & Peng (2002) [Likelihood based confidence intervals for the tail index. Extremes 5, 337–352] applied this method to construct a confidence interval for the tail index of a heavy‐tailed distribution. It turns out that the empirical likelihood method, as well as other likelihood‐based methods, performs better than the normal approximation method in terms of coverage probability. However, when the sample size is small, the confidence interval computed using the χ2 approximation has a serious undercoverage problem. Motivated by Tsao (2004) [A new method of calibration for the empirical loglikelihood ratio. Statist. Probab. Lett. 68, 305–314], this paper proposes a new method of calibration, which corrects the undercoverage problem.  相似文献   

12.
Kendall and Gehan estimating functions are commonly used to estimate the regression parameter in accelerated failure time model with censored observations in survival analysis. In this paper, we apply the jackknife empirical likelihood method to overcome the computation difficulty about interval estimation. A Wilks’ theorem of jackknife empirical likelihood for U-statistic type estimating equations is established, which is used to construct the confidence intervals for the regression parameter. We carry out an extensive simulation study to compare the Wald-type procedure, the empirical likelihood method, and the jackknife empirical likelihood method. The proposed jackknife empirical likelihood method has a better performance than the existing methods. We also use a real data set to compare the proposed methods.  相似文献   

13.
We propose a weighted empirical likelihood approach to inference with multiple samples, including stratified sampling, the estimation of a common mean using several independent and non-homogeneous samples and inference on a particular population using other related samples. The weighting scheme and the basic result are motivated and established under stratified sampling. We show that the proposed method can ideally be applied to the common mean problem and problems with related samples. The proposed weighted approach not only provides a unified framework for inference with multiple samples, including two-sample problems, but also facilitates asymptotic derivations and computational methods. A bootstrap procedure is also proposed in conjunction with the weighted approach to provide better coverage probabilities for the weighted empirical likelihood ratio confidence intervals. Simulation studies show that the weighted empirical likelihood confidence intervals perform better than existing ones.  相似文献   

14.
Empirical likelihood-based inference for the nonparametric components in additive partially linear models is investigated. An empirical likelihood approach to construct the confidence intervals of the nonparametric components is proposed when the linear covariate is measured with and without errors. We show that the proposed empirical log-likelihood ratio is asymptotically standard chi-squared without requiring the undersmoothing of the nonparametric components. Then, it can be directly used to construct the confidence intervals for the nonparametric functions. A simulation study indicates that, compared with a normal approximation-based approach, the proposed method works better in terms of coverage probabilities and widths of the pointwise confidence intervals.  相似文献   

15.
An empirical likelihood method was proposed by Owen and has been extended to many semiparametric and nonparametric models with a continuous response variable. However, there has been less attention focused on the generalized regression model. This article systematically studies two adjusted empirical-likelihood-based methods in the generalized varying-coefficient partially linear models. Based on the popular profile likelihood estimation procedure, the new adjusted empirical likelihood technology for the parameter is established and the resulting statistics are shown to be asymptotically standard chi-square distributed. Further, the adjusted empirical-likelihood-based confidence regions are established, and an efficient adjusted profile empirical-likelihood-based confidence intervals/regions for any components of the parameter, which are of primary interest, is also constructed. Their asymptotic properties are also derived. Some numerical studies are carried out to illustrate the performance of the proposed inference procedures.  相似文献   

16.
The authors study the empirical likelihood method for linear regression models. They show that when missing responses are imputed using least squares predictors, the empirical log‐likelihood ratio is asymptotically a weighted sum of chi‐square variables with unknown weights. They obtain an adjusted empirical log‐likelihood ratio which is asymptotically standard chi‐square and hence can be used to construct confidence regions. They also obtain a bootstrap empirical log‐likelihood ratio and use its distribution to approximate that of the empirical log‐likelihood ratio. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals, and perform better than a normal approximation based method.  相似文献   

17.
This paper develops a smoothed empirical likelihood (SEL)-based method to construct confidence intervals for quantile regression parameters with auxiliary information. First, we define the SEL ratio and show that it follows a Chi-square distribution. We then construct confidence intervals according to this ratio. Finally, Monte Carlo experiments are employed to evaluate the proposed method.  相似文献   

18.
Abstract. In this article, a naive empirical likelihood ratio is constructed for a non‐parametric regression model with clustered data, by combining the empirical likelihood method and local polynomial fitting. The maximum empirical likelihood estimates for the regression functions and their derivatives are obtained. The asymptotic distributions for the proposed ratio and estimators are established. A bias‐corrected empirical likelihood approach to inference for the parameters of interest is developed, and the residual‐adjusted empirical log‐likelihood ratio is shown to be asymptotically chi‐squared. These results can be used to construct a class of approximate pointwise confidence intervals and simultaneous bands for the regression functions and their derivatives. Owing to our bias correction for the empirical likelihood ratio, the accuracy of the obtained confidence region is not only improved, but also a data‐driven algorithm can be used for selecting an optimal bandwidth to estimate the regression functions and their derivatives. A simulation study is conducted to compare the empirical likelihood method with the normal approximation‐based method in terms of coverage accuracies and average widths of the confidence intervals/bands. An application of this method is illustrated using a real data set.  相似文献   

19.
In this paper, we study the construction of confidence intervals for a probability density function under a negatively associated sample by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically χ2‐type distributed. The result is used to obtain EL based confidence interval on the probability density function.  相似文献   

20.
In a continuous-scale diagnostic test, the receiver operating characteristic (ROC) curve is useful to evaluate the range of the sensitivity at the cut-off point that yields a desired specificity. Many current studies on inference of the ROC curve focus on the complete data case. In this paper, an imputation-based profile empirical likelihood ratio for the sensitivity, which is free of bandwidth selection, is defined and shown to follow an asymptotically scaled Chi-square distribution. Two new confidence intervals are proposed for the sensitivity with missing data. Simulation studies are conducted to evaluate the finite sample performance of the proposed intervals in terms of coverage probability. A real example is used to illustrate the new methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号