首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
文章研究了决策者为风险厌恶时,带有缺货惩罚的单周期报童模型风险决策问题;比较了传统报童模型引入缺货惩罚前后,均值方差与半方差两种方法风险度量的结果,并以具体数值算例进行了分析说明。研究发现,缺货惩罚的引入对风险决策产生了很大的影响,且考虑缺货成本前后,半方差方法都明显小于方差方法所得到的风险度量结果。  相似文献   

2.
 本文讨论了指数族广义部分线性单指数模型(Generalized Partially Linear Single Index Models, GPLSIM) 的惩罚样条迭代估计,提出了基于惩罚似然和一组预先取定的单指数参数向量 的初始估计的迭代估计算法。另外本文还通过一组模拟数据的分析对所提出的迭代算法进行了验证。  相似文献   

3.
文章关注系数具有两维异质性结构的面板分位数模型,基于SCAD惩罚函数和MCP惩罚函数提出双惩罚最小加权绝对偏差目标函数,同时进行参数估计和两维异质性结构识别。利用ADMM算法求解目标函数,并使用BIC信息准则通过网格搜索选择最优调节参数。根据蒙特卡洛模拟结果验证了所提方法的有限样本性质,最后使用实际数据检验了其应用效果。研究结果表明:所提出的方法能够准确识别两维异质性结构,并且Post估计量的参数估计精确度接近于Oracle估计量。  相似文献   

4.
SCAD惩罚逻辑回归的财务预警模型   总被引:2,自引:1,他引:2  
作为一种有监督学习算法,逻辑回归(Logistic Regression,LR)已广泛应用于财务危机建模分析,但其潜在地存在过拟合问题。鉴此,提出一种基于平滑削边绝对偏离(Smoothly Clipped Absolute Deviation,SCAD)惩罚逻辑回归的财务预警模型。该模型不仅能很好地解决模型过拟合问题,而且还可以同时实现变量选择和模型系数估计,并提高了模型的解释性。结合沪深股市A股制造业上市公司的财务数据进行实证研究,同时对比一般的L1正则化和L2正则化逻辑回归模型的预警效果进行实证分析,实验结果表明:SCAD惩罚逻辑回归模型具有较好的分类效果和较强的经济解释能力。  相似文献   

5.
罗军 《统计与决策》2020,(8):170-173
文章基于Stackelberg博弈模型设定了供应中断惩罚机制,分析了存在供应中断的风险下,当供应商采用MTO方式供应时,双方博弈的结果是:采购商的订货量随着终端市场销售价格和供应商供应中断惩罚成本的提升而提升,随着供应商的稳定性水平、定价水平的增加而降低,这一订货量决策是采购商的Stackelberg博弈最优解。供应商的稳定性水平是决策模型最重要的外界环境变量,当供应中断概率增加时,供应商本能地降低产品报价,来主动规避自身无法回避的供应中断风险,从而刺激采购商提升订货量。  相似文献   

6.
函数系数协整模型可以克服非参数建模时的“维数困难”,同时体现系数的动态变化,被广泛应用于非平稳数据间复杂问题的研究。实践中经济序列常表现出时变波动方差和厚尾特征,传统核权最小二乘估计方法将不再适用。鉴于此,文章基于L1损失函数重构估计流程,选择表现稳健的局部线性核估计方法,并引入自适应方法,提出局部线性自适应最小绝对离差估计(ALADE)。模拟结果验证了所提估计方法可提升系数估计精度,优化模型整体拟合效果,同时绝对值交叉验证方法在选取最优窗宽时优势明显。实证分析发现,所提方法可识别中英两国汇率和价差间的动态协整关系,拟合系数平滑且接近理论值。  相似文献   

7.
文章针对协变量为函数型变量、响应变量为标量的函数型分位数回归模型,提出了一种局部稀疏估计方法,能够正确识别系数函数的空子区域。首先,使用非对称拉普拉斯分布构建函数型分位数回归的全似然函数,并通过EM算法推导出系数向量的估计式。其次,提出了一种结合样条光滑和平滑剪切绝对偏离方法的局部稀疏估计方法。数值模拟结果表明,该估计方法在不同的样本量和分位点下均优于传统方法。最后,通过实例证明了估计方法的有效性。  相似文献   

8.
针对混合效应模型中固定效应与随机效应同时选择问题,提出了施加多个惩罚项的回归过程,同时给出了参数估计的交替迭代算法,并证明了算法的收敛性。针对两种特殊的多惩罚回归过程,分别利用计算机模拟数据进行了比较分析,结果显示新方法在各种不同条件下均有良好的表现,尤其是能处理高维稀疏的混合效应模型。最后通过一个实际数据演示了新方法的应用。  相似文献   

9.
尽管贝叶斯分位数回归方法能够有效克服经济金融数据的尖峰厚尾、结构突变等问题,充分借鉴已有研究成果信息,但是其并不能很好解决多维变量模型的维数灾难问题.为此,文章在贝叶斯分位数回归基础上,结合自适应Lasso变量惩罚作用,构建了基于MH抽样的自适应Lasso惩罚贝叶斯分位数回归模型.通过仿真模拟实验以及MCMC链条检验,证明上述模型具有优良拟合性质,尤其是在小样本情形下.  相似文献   

10.
文章在资源节约与努力水平具有相关性的前提下,在仅有供应商和客户的产品服务系统中,建立了以成本节约和使用量减少为基础的共享契约模型,分析了努力因素对系统协作策略的影响。通过对共享模型的分析,发现系统收益仍没有达到最优状态,为此提出了基于回馈与惩罚策略的产品服务系统节约共享契约理论,解决了节约共享契约无法实现系统协作的问题,使系统恢复到协作状态,并给出了确定最优契约参数的方法。最后,通过算例对模型进行了验证分析。  相似文献   

11.
In this article, the varying-coefficient single-index model (VCSIM) is discussed based on penalized spline estimation method. All the coefficient functions are fitted by P-spline and all parameters in P-spline varying-coefficient model can be estimated simultaneously by penalized nonlinear least squares. The detailed algorithm is given, including choosing smoothing parameters and knots. The approach is rapid and computationally stable. √n consistency and asymptotic normality of the estimators of all the parameters are showed. Both simulated and real data examples are given to illustrate the proposed estimation methodology.  相似文献   

12.
This paper develops new penalized estimation for linear regression model. We prove that the new method, which is referred to as efficient penalized estimation, is selection consistent, and more asymptotically efficient than the original one. Besides, we construct a new selector called efficient BIC Selector to tune the regularization parameter in the new estimation, which is shown to be consistent. Our simulation results suggest that the new method may bring significant improvement relative to the original penalized estimation. In addition, we employ a real data set to illustrate the application of the efficient penalized estimation.  相似文献   

13.
Varying-coefficient models are useful extensions of classical linear models. They arise from multivariate nonparametric regression, nonlinear time series modeling and forecasting, longitudinal data analysis, and others. This article proposes the penalized spline estimation for the varying-coefficient models. Assuming a fixed but potentially large number of knots, the penalized spline estimators are shown to be strong consistency and asymptotic normality. A systematic optimization algorithm for the selection of multiple smoothing parameters is developed. One of the advantages of the penalized spline estimation is that it can accommodate varying degrees of smoothness among coefficient functions due to multiple smoothing parameters being used. Some simulation studies are presented to illustrate the proposed methods.  相似文献   

14.
Quadratic programming is a versatile tool for calculating estimates in penalized regression. It can be used to produce estimates based on L 1 roughness penalties, as in total variation denoising. In particular, it can calculate estimates when the roughness penalty is the total variation of a derivative of the estimate. Combining two roughness penalties, the total variation and total variation of the third derivative, results in an estimate with continuous second derivative but controls the number of spurious local extreme values. A multiresolution criterion may be included in a quadratic program to achieve local smoothing without having to specify smoothing parameters.  相似文献   

15.
16.
We propose a Bayesian nonparametric instrumental variable approach under additive separability that allows us to correct for endogeneity bias in regression models where the covariate effects enter with unknown functional form. Bias correction relies on a simultaneous equations specification with flexible modeling of the joint error distribution implemented via a Dirichlet process mixture prior. Both the structural and instrumental variable equation are specified in terms of additive predictors comprising penalized splines for nonlinear effects of continuous covariates. Inference is fully Bayesian, employing efficient Markov chain Monte Carlo simulation techniques. The resulting posterior samples do not only provide us with point estimates, but allow us to construct simultaneous credible bands for the nonparametric effects, including data-driven smoothing parameter selection. In addition, improved robustness properties are achieved due to the flexible error distribution specification. Both these features are challenging in the classical framework, making the Bayesian one advantageous. In simulations, we investigate small sample properties and an investigation of the effect of class size on student performance in Israel provides an illustration of the proposed approach which is implemented in an R package bayesIV. Supplementary materials for this article are available online.  相似文献   

17.
Parametric model-based regression imputation is commonly applied to missing-data problems, but is sensitive to misspecification of the imputation model. Little and An (2004 Little , R. J. A. , An , H. ( 2004 ). Robust likelihood-based analysis of multivariate data with missing values . Statistica Sinica 14 : 949968 .[Web of Science ®] [Google Scholar]) proposed a semiparametric approach called penalized spline propensity prediction (PSPP), where the variable with missing values is modeled by a penalized spline (P-Spline) of the response propensity score, which is logit of the estimated probability of being missing given the observed variables. Variables other than the response propensity are included parametrically in the imputation model. However they only considered point estimation based on single imputation with PSPP. We consider here three approaches to standard errors estimation incorporating the uncertainty due to non response: (a) standard errors based on the asymptotic variance of the PSPP estimator, ignoring sampling error in estimating the response propensity; (b) standard errors based on the bootstrap method; and (c) multiple imputation-based standard errors using draws from the joint posterior predictive distribution of missing values under the PSPP model. Simulation studies suggest that the bootstrap and multiple imputation approaches yield good inferences under a range of simulation conditions, with multiple imputation showing some evidence of closer to nominal confidence interval coverage when the sample size is small.  相似文献   

18.
We describe and analyze a longitudinal diffusion tensor imaging (DTI) study relating changes in the microstructure of intracranial white matter tracts to cognitive disability in multiple sclerosis patients. In this application the scalar outcome and the functional exposure are measured longitudinally. This data structure is new and raises challenges that cannot be addressed with current methods and software. To analyze the data, we introduce a penalized functional regression model and inferential tools designed specifically for these emerging types of data. Our proposed model extends the Generalized Linear Mixed Model by adding functional predictors; this method is computationally feasible and is applicable when the functional predictors are measured densely, sparsely or with error. An online appendix compares two implementations, one likelihood-based and the other Bayesian, and provides the software used in simulations; the likelihood-based implementation is included as the lpfr() function in the R package refund available on CRAN.  相似文献   

19.
基于辅助回归模型的空间Hausman检验   总被引:1,自引:0,他引:1  
 基于面板数据空间误差分量模型,提出空间Hausman检验,并通过数理推导,构造辅助回归模型的空间Hausman检验,进而通过Monte Carlo模拟实验,研究空间Hausman检验,以及辅助回归空间Hausman检验的有限样本性质。研究结果表明,空间Hausman检验能有效矫正空间面板数据下经典Hausman检验的水平扭曲,但随着空间相关性和样本量增大,其水平扭曲偏离理想值;辅助回归空间Hausman检验始终保持理想的水平扭曲。此外,二者均具有优越的检验功效。  相似文献   

20.
In this article, procedures are proposed to test the hypothesis of equality of two or more regression functions. Tests are proposed by p-values, first under homoscedastic regression model, which are derived using fiducial method based on cubic spline interpolation. Then, we construct a test in the heteroscedastic case based on Fisher's method of combining independent tests. We study the behaviors of the tests by simulation experiments, in which comparisons with other tests are also given. The proposed tests have good performances. Finally, an application to a data set are given to illustrate the usefulness of the proposed test in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号