首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let Xi≤?≤Xm and Yi≤?≤Yn be two sets of independent order statistics from continous distributions with distribution functions F and G respectively. Let Ri denote the rank of Xi in the combined order sample. Steck (1980) has found an expression for P(biRiai, all i) when F = h(G), h being the incomplete beta function with parameters (α,β?α+1). An alternative expression for the same probability is obtained which is computationally a substantial improvement on Steck's result.  相似文献   

2.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

3.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

4.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

5.
Let Mo denote the number of empty cells when n distinguishable balls are distributed independently and at random in ra cells such that each ball stays with probability p in its cell, and falls through with probability 1-p. We find the probability generating function of Mo by solving a partial differential equation satisfied by a suitable generating function. The corresponding function for the classical case p = 1 is well-known, but obtained by different methods.  相似文献   

6.
For each n, k ∈ ?, let Y i  = (Y i1, Y i2,…, Y ik ), 1 ≤ i ≤ n be independent random vectors in ? k with finite third moments and Y ij are independent for all j = 1, 2,…, k. In this article, we use the Stein's technique to find constants in uniform bounds for multidimensional Berry-Esseen inequality on a closed sphere, a half plane and a rectangular set.  相似文献   

7.
8.
Let Mo denote the number of empty cells when n balls are dropped independently and at random in m cells such that each ball stays in its cell with probability p and falls through with probability 1-p. A Poisson limit is known for Mo when (n/m)→∞. We find a corresponding approximation to the distribution of Mo when m is large but finite, Ihe method is elementary, and yields the rate of convergence to the limit law. Ihe results are new for the classical case (p = 1) as well.  相似文献   

9.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

10.
Let X1 X2 … XN be independent normal p-vectors with common mean vector $$ = ($$) and common nonsingular covariance matrix $$ = Diag ($sGi) [(1–p) I + pE] Diag ($sGi), $sGi> 0, i = 1… p, 1>p>=1/p–1. Write rij = sample correlation between the i th and the j th variable i j = 1,… p. It has been proved that for testing the hypothesis H0 : p = 0 against the alternative H1 : p>0 where $$ and $sG1,…, $sGp are unknown, the test which rejects H0 for large value of $$ rij is locally best invariant for every $aL: 0 > $aL > 1 and locally minimax as p $$ 0 in the sense of Giri and Kiefer, 1964, for every $aL: 0 > $aL $$ $aL0 > 1 where$aL0 = Pp=0 $$.  相似文献   

11.
Assume that there are two types of insurance contracts in an insurance company, and the ith related claims are denoted by {Xij, j ? 1}, i = 1, 2. In this article, the asymptotic behaviors of precise large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j are investigated, and under several assumptions, some corresponding asymptotic formulas are obtained.  相似文献   

12.
In this paper we consider models involving the convex hull operation of the parameter and the noise i.e. Yi = CH(A, XX). Then we generalize the basic models to ANOVA models; i.e. Yij=CH(A∪Bj,Xij). In some cases the consistent estimators for the J U new parameters are derived. Assuming the existence of density forrandom convex sets, we derive the likelihood for the convex hull model. We then find the maximum Likelihood Estimators for the parameters. Examples for some random convex sets with finite dimensional distributions are derived to show how good these estimators are.  相似文献   

13.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

14.
Let (X1,…,Xk) be a multinomial vector with unknown cell probabilities (p1,?,pk). A subset of the cells is to be selected in a way so that the cell associated with the smallest cell probability is included in the selected subset with a preassigned probability, P1. Suppose the loss is measured by the size of the selected subset, S. Using linear programming techniques, selection rules can be constructed which are minimax with respect to S in the class of rules which satisfy the P1-condition. In some situations, the rule constructed by this method is the rule proposed by Nagel (1970). Similar techniques also work for selection in terms of the largest cell probability.  相似文献   

15.
A RENEWAL THEOREM IN MULTIDIMENSIONAL TIME   总被引:1,自引:0,他引:1  
Let Yl, Y2,… be i.i.d., positive, integer-valued random variables with means, μ. Let the sequences {Yij, j= 1,2,…}, i= 1,…, r be independent copies of {Y1, Y2,…}. For n={n1,…, nr.}, n1≥1, let Sn=S?n1k1=1= 1 …S?nrkr=1 Yik1… Yrkr. We show that S?Nk=1S?k1=1…S?nr=1 P[[Sn= k] ? [μ-r N logr-1 (N)/(r-1)!] as N →∞.  相似文献   

16.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

17.
ABSTRACT

Let (Xi, Yi), i = 1, …, n be a pair where the first coordinate Xi represents the lifetime of a component, and the second coordinate Yi denotes the utility of the component during its lifetime. Then the random variable Y[r: n] which is known to be the concomitant of the rth order statistic defines the utility of the component which has the rth smallest lifetime. In this paper, we present a dynamic analysis for an n component system under the above-mentioned concomitant setup.  相似文献   

18.
Let Nn={1,2,…,n}. We sample with replacement from the set Nn assuming that each element has probability 1/n of being drawn. Let Mn be the waiting time determined by certain stoping rules in the coupon collector's problem. We investigate models for the asymptotic behavior of the excesses of Mn over the high thresholds.  相似文献   

19.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

20.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号