首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Let π01,…,πk be k+1 independent populations. For i=0,1,…,ki has the densit f(xi), where the (unknown) parameter θi belongs to an interval of the real line. Our goal is to select from π1,… πk (experimental treatments) those populations, if any, that are better (suitably defined) than π0 which is the control population. A locally optimal rule is derived in the class of rules for which Pr(πi is selected)γi, i=1,…,k, when θ01=?=θk. The criterion used for local optimality amounts to maximizing the efficiency in a certain sense of the rule in picking out the superior populations for specific configurations of θ=(θ0,…,θk) in a neighborhood of an equiparameter configuration. The general result is then applied to the following special cases: (a) normal means comparison — common known variance, (b) normal means comparison — common unknown variance, (c) gamma scale parameters comparison — known (unequal) shape parameters, and (d) comparison of regression slopes. In all these cases, the rule is obtained based on samples of unequal sizes.  相似文献   

2.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

3.
Let X1,X2, … be iid random variables with the pdf f(x,θ)=exp(θx?b(θ)) relative to a σ-finite measure μ, and consider the problem of deciding among three simple hypotheses Hi:θ=θi (1?i?3) subject to P(acceptHi|θi)=1?α (1?i?3). A procedure similar to Sobel–Wald procedure is discussed and its asymptotic efficiency as compared with the best nonsequential test is obtained by finding the limit lima→0(EiN(a)/n(a)), where N (a) is the stopping time of the proposed procedure and n(a) is the sample size of the best non-sequential test. It is shown that the same asymptotic limit holds for the original Sobel–Wald procedure. Specializing to N(θ,1) distribution it is found that lima→0(EiN(α)/n(α))=14 (i=1,2) and lima→0 (E3N(α)n(α))=δ21/4δ, where δi=(θi+1?θi) with 0<δ1?δ2. Also, the asymptotic efficiency evaluated when the X's have an exponential distribution.  相似文献   

4.
Let X1,…,Xn be a sample from a population with continuous distribution function F(x?θ) such that F(x)+F(-x)=1 and 0<F(x)<1, x?R1. It is shown that the power- function of a monotone test of H: θ=θ0 against K: θ>θ0 cannot tend to 1 as θ?θ0 → ∞ more than n times faster than the tails of F tend to 0. Some standard as well as robust tests are considered with respect to this rate of convergence.  相似文献   

5.
An estimating equation for a parameter θ, based on an observation ?, is an equation g(x,θ)=0 which can be solved for θ in terms of x. An estimating equation is unbiased if the funaction g has 0 mean for every θ. For the case when the form of the frequency function p(x,θ) is completely specified up to the unknown real parameter θ, the optimality of the m.1 equation ?logp=0 in the class of all unbiased estimating equations was established by Godambe (1960). In this paper we allow the form of the frequency function p to vary assuming that x=(x1,…,xn)?Rn and that under p, E(xi)=θ. x1,…, xn are independent observations on a variate x, it is shown that among all the unbiased estimating equations for θ, x??θ=0 is uniquely optimum up to a constant multiple.  相似文献   

6.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

7.
For a fixed point θ0 and a positive value c0, this paper studies the problem of testing the hypotheses H0:|θθ0|≤c0 against H1:|θθ0|>c0 for the normal mean parameter θ using the empirical Bayes approach. With the accumulated past data, a monotone empirical Bayes test is constructed by mimicking the behavior of a monotone Bayes test. Such an empirical Bayes test is shown to be asymptotically optimal and its regret converges to zero at a rate (lnn)2.5/n where n is the number of past data available, when the current testing problem is considered. A simulation study is also given, and the results show that the proposed empirical Bayes procedure has good performance for small to moderately large sample sizes. Our proposed method can be applied for testing close to a control problem or testing the therapeutic equivalence of one standard treatment compared to another in clinical trials.  相似文献   

8.
The problem of simultaneously selecting two non-empty subsets, SLand SU, of k populations which contain the lower extreme population (LEP) and the upper extreme population (UEP), respectively, is considered. Unknown parameters θ1,…,θkcharacterize the populations π1,…,πkand the populations associated with θ[1]=min θi. and θ[k]= max θi. are called the LEP and the UEP, respectively. It is assumed that the underlying distributions possess the monotone likelihood ratio property and that the prior distribution of θ= (θ1,…,θk) is exchangeable. The Bayes rule with respect to a general loss function is obtained. Bayes rule with respect to a semi-additive and non-negative loss function is also determined and it is shown that it is minimax and admissible. When the selected subsets are required to be disjoint, it shown that the Bayes rule with respect to a specific loss function can be obtained by comparing certain computable integrals, Application to normal distributions with unknown means θ1,…,θkand a common known variance is also considered.  相似文献   

9.
A class of invariant Bayes rules is derived for testing homogeneity of k (≥2) different populations against (kt) slippage alternatives that some (unknown) subset of size t of the given populations has parameter larger than the remaining k-t, where t is a given integer between 1 and k-1. For a similar problem in nonparametric situations, locally best tests based on ranks are derived.  相似文献   

10.
This paper deals with a sequence-compound estimation. The component problem is the squared error loss estimation of θ?[a,b] based on an observation X whose p.d.f. is of the form u(x)c(θ)exp(?xθ). For each 0<t<12 a class of sequence-compound estimators ψ?=ψ?1,ψ?2,…) is exhibited whose compound risk (average of risks) up to stage n differs from the Bayes envelope (in the component problem) w.r.t. the empiric distribution Gn of the parameters involved up to stage n by a quantity of order O(n?δt) for a δ>0. It is also shown that at any stage i the difference of the risk of ψ?i and the risk of the Bayes response w.r.t. Gi?1 is O(i?δt). Examples of the above type of families are given where δ is min{1,2ab} and t is arbitrarily close to 12. Here it may be worthwhile to mention that a rate O(n?12) or better has not yet been obtained even in a very special family of densities.  相似文献   

11.
Let π1,…, πk represent k(?2) independent populations. The quality of the ith population πi is characterized by a real-valued parameter θi, usually unknown. We define the best population in terms of a measure of separation between θi's. A selection of a subset containing the best population is called a correct selection (CS). We restrict attention to rules for which the size of the selected subset is controlled at a given point and the infimum of the probability of correct selection over the parameter space is maximized. The main theorem deals with construction of an essentially complete class of selection rules of the above type. Some classical subset selection rules are shown to belong to this class.  相似文献   

12.
Let X1,…,Xr?1,Xr,Xr+1,…,Xn be independent, continuous random variables such that Xi, i = 1,…,r, has distribution function F(x), and Xi, i = r+1,…,n, has distribution function F(x?Δ), with -∞ <Δ< ∞. When the integer r is unknown, this is refered to as a change point problem with at most one change. The unknown parameter Δ represents the magnitude of the change and r is called the changepoint. In this paper we present a general review discussion of several nonparametric approaches for making inferences about r and Δ.  相似文献   

13.
We examine a more general form of consistency which does not necessarily rely on the correct specification of the likelihood in the Bayesian setting, but we restrict the form of the likelihood to be in a minimal standard exponential family. First, we investigate the asymptotic behavior of the Bayes estimator of a parameter, and show that the Bayes estimator is consistent under the condition that the exponential family is full. However, we find that θi=θj and ∥θiθj∥<ε, even for very small ε, behave differently, even in an asymptotic manner, when the model is not correct. We note that the distinction applies generally to Bayesian testing problems.  相似文献   

14.
Bayesian and empirical Bayesian decision rules are exhibited for the interval estimation of the parameter 0 of a Uniform (0,θ) distribution. The estimate ?,δ>resulting in the interval [?,?+δ]suffers loss given by L(?,δ>,θ)=1-[?≦e≦?+δ]+c1((?-θ)2+(?+δ?θ)2))+c2δ. The solution is presented for prior distributions G which have bounded support, no point masses,∫θ?mdG(θ)<∞ and for some integer m. An example is presented involving a particular parametric form for G and rates of risk convergence in the empirical Bayes problem for this example are calculated.  相似文献   

15.
Let X have a gamma distribution with known shape parameter θr;aL and unknown scale parameter θ. Suppose it is known that θ ≥ a for some known a > 0. An admissible minimax estimator for scale-invariant squared-error loss is presented. This estimator is the pointwise limit of a sequence of Bayes estimators. Further, the class of truncated linear estimators C = {θρρ(x) = max(a, ρ), ρ > 0} is studied. It is shown that each θρ is inadmissible and that exactly one of them is minimax. Finally, it is shown that Katz's [Ann. Math. Statist., 32, 136–142 (1961)] estimator of θ is not minimax for our loss function. Some further properties of and comparisons among these estimators are also presented.  相似文献   

16.
Unbiased linear estimators are considered for the model
Y(xi)=θ0+∑kj=1θjxij+ψ(xi)+εi, i=1,2,…,n,
where ψ(x) is an unknown contamination. It is assumed that |ψ(x)|?φ(6x6) where φ is a convex function. Minimax analogues of Φp-optimality criteria are introduced. It is shown that, under certain (sufficient) conditions, the least squares estimators and corresponding designs are optimal in the class of all unbiased linear estimators and designs. It is also shown that, in the case when least squares estimators with symmetric design do not lead to an optimal solution, the relative efficiency of optimal least squares is not diminishing and has a uniform lower bound.  相似文献   

17.
18.
A Bayes-type estimator is proposed for the worth parameter πi and for the treatment effect parameter ln πi in the Bradley-Terry Model for paired comparison. In contrast to current Bayes estimators which require iterative numberical calculations, this estimator has a closed form expression. This estimation technique is also extended to obtain estimators for the Luce Multiple Comparison Model. An application of this technique to a 23 factorial experiment with paired comparisons is presented.  相似文献   

19.
In this paper, we consider the prediction problem in multiple linear regression model in which the number of predictor variables, p, is extremely large compared to the number of available observations, n  . The least-squares predictor based on a generalized inverse is not efficient. We propose six empirical Bayes estimators of the regression parameters. Three of them are shown to have uniformly lower prediction error than the least-squares predictors when the vector of regressor variables are assumed to be random with mean vector zero and the covariance matrix (1/n)XtX(1/n)XtX where Xt=(x1,…,xn)Xt=(x1,,xn) is the p×np×n matrix of observations on the regressor vector centered from their sample means. For other estimators, we use simulation to show its superiority over the least-squares predictor.  相似文献   

20.
Designs for quadratic and cubic regression are considered when the possible choices of the controlable variable are points x=( x1,x2,…,xq) in the q-dimensional. Full of radius R, Bq(R) ={x:Σ4ix2i?R2}. The designs that are optimum among rotatable designs with respect to the D-, A-, and E-optimality criteria are compared in their performance relative to these and other criteria, including extrapolation. Additionally, the performance of a design optimum for one value of R, when it is implemented for a different value of R, is investigated. Some of the results are developed algebraically; others, numerically. For example, in quadratic regression the A-optimum design appears to be fairly robust in its efficiency, under variation of criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号