首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Efficiency and robustness are two fundamental concepts in parametric estimation problems. It was long thought that there was an inherent contradiction between the aims of achieving robustness and efficiency; that is, a robust estimator could not be efficient and vice versa. It is now known that the minimum Hellinger distance approached introduced by Beran [R. Beran, Annals of Statistics 1977;5:445–463] is one way of reconciling the conflicting concepts of efficiency and robustness. For parametric models, it has been shown that minimum Hellinger estimators achieve efficiency at the model density and simultaneously have excellent robustness properties. In this article, we examine the application of this approach in two semiparametric models. In particular, we consider a two‐component mixture model and a two‐sample semiparametric model. In each case, we investigate minimum Hellinger distance estimators of finite‐dimensional Euclidean parameters of particular interest and study their basic asymptotic properties. Small sample properties of the proposed estimators are examined using a Monte Carlo study. The results can be extended to semiparametric models of general form as well. The Canadian Journal of Statistics 37: 514–533; 2009 © 2009 Statistical Society of Canada  相似文献   

2.
3.
One feature of the usual polychotomous logistic regression model for categorical outcomes is that a covariate must be included in all the regression equations. If a covariate is not important in all of them, the procedure will estimate unnecessary parameters. More flexible approaches allow different subsets of covariates in different regressions. One alternative uses individualized regressions which express the polychotomous model as a series of dichotomous models. Another uses a model in which a reduced set of parameters is simultaneously estimated for all the regressions. Large-sample efficiencies of these procedures were compared in a variety of circumstances in which there was a common baseline category for the outcome and the covariates were normally distributed. For a correctly specified model, the reduced estimates were over 100% efficient for nonzero slope parameters and up to 500% efficient when the baseline frequency and the effect of interest were small. The individualized estimates could have efficiencies less than 50% when the effect of interest was large, but were also up to 130% efficient when the baseline frequency was large and the effect of interest was small. Efficiency was usually enhanced by correlation among the covariates. For an underspecified reduced model, asymptotic bias in the reduced estimates was approximately proportional to the magnitude of the omitted parameter and to the reciprocal of the baseline frequency.  相似文献   

4.
We develop a stochastic model describing the joint distribution of (X,N), where N has a geometric distribution while X is the sum of N dependent, heavy-tail Pareto components. Models of this form arise in many applications, ranging from hydro-climatology to finance and insurance. We present fundamental properties of this vector, including marginal and conditional distributions, moments, representations, and parameter estimation. We also include an example from finance, illustrating modeling potential of this new bivariate distribution.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号