首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recurrent events data with a terminal event often arise in many longitudinal studies. Most of existing models assume multiplicative covariate effects and model the conditional recurrent event rate given survival. In this article, we propose a marginal additive rates model for recurrent events with a terminal event, and develop two procedures for estimating the model parameters. The asymptotic properties of the resulting estimators are established. In addition, some numerical procedures are presented for model checking. The finite-sample behavior of the proposed methods is examined through simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

2.
Nonparametric estimation and inferences of conditional distribution functions with longitudinal data have important applications in biomedical studies, such as epidemiological studies and longitudinal clinical trials. Estimation approaches without any structural assumptions may lead to inadequate and numerically unstable estimators in practice. We propose in this paper a nonparametric approach based on time-varying parametric models for estimating the conditional distribution functions with a longitudinal sample. Our model assumes that the conditional distribution of the outcome variable at each given time point can be approximated by a parametric model after local Box–Cox transformation. Our estimation is based on a two-step smoothing method, in which we first obtain the raw estimators of the conditional distribution functions at a set of disjoint time points, and then compute the final estimators at any time by smoothing the raw estimators. Applications of our two-step estimation method have been demonstrated through a large epidemiological study of childhood growth and blood pressure. Finite sample properties of our procedures are investigated through a simulation study. Application and simulation results show that smoothing estimation from time-variant parametric models outperforms the existing kernel smoothing estimator by producing narrower pointwise bootstrap confidence band and smaller root mean squared error.  相似文献   

3.
Monte Carlo simulation methods are increasingly being used to evaluate the property of statistical estimators in a variety of settings. The utility of these methods depends upon the existence of an appropriate data-generating process. Observational studies are increasingly being used to estimate the effects of exposures and interventions on outcomes. Conventional regression models allow for the estimation of conditional or adjusted estimates of treatment effects. There is an increasing interest in statistical methods for estimating marginal or average treatment effects. However, in many settings, conditional treatment effects can differ from marginal treatment effects. Therefore, existing data-generating processes for conditional treatment effects are of little use in assessing the performance of methods for estimating marginal treatment effects. In the current study, we describe and evaluate the performance of two different data-generation processes for generating data with a specified marginal odds ratio. The first process is based upon computing Taylor Series expansions of the probabilities of success for treated and untreated subjects. The expansions are then integrated over the distribution of the random variables to determine the marginal probabilities of success for treated and untreated subjects. The second process is based upon an iterative process of evaluating marginal odds ratios using Monte Carlo integration. The second method was found to be computationally simpler and to have superior performance compared to the first method.  相似文献   

4.
In many clinical studies, subjects are at risk of experiencing more than one type of potentially recurrent event. In some situations, however, the occurrence of an event is observed, but the specific type is not determined. We consider the analysis of this type of incomplete data when the objectives are to summarize features of conditional intensity functions and associated treatment effects, and to study the association between different types of event. Here we describe a likelihood approach based on joint models for the multi-type recurrent events where parameter estimation is obtained from a Monte-Carlo EM algorithm. Simulation studies show that the proposed method gives unbiased estimators for regression coefficients and variance–covariance parameters, and the coverage probabilities of confidence intervals for regression coefficients are close to the nominal level. When the distribution of the frailty variable is misspecified, the method still provides estimators of the regression coefficients with good properties. The proposed method is applied to a motivating data set from an asthma study in which exacerbations were to be sub-typed by cellular analysis of sputum samples as eosinophilic or non-eosinophilic.  相似文献   

5.
This paper contrasts two approaches to estimating quantile regression models: traditional semi-parametric methods and partially adaptive estimators using flexible probability density functions (pdfs). While more general pdfs could have been used, the skewed Laplace was selected for pedagogical purposes. Monte Carlo simulations are used to compare the behavior of the semi-parametric and partially adaptive quantile estimators in the presence of possibly skewed and heteroskedastic data. Both approaches accommodate skewness and heteroskedasticity which are consistent with linear quantiles; however, the partially adaptive estimator considered allows for non linear quantiles and also provides simple tests for symmetry and heteroskedasticity. The methods are applied to the problem of estimating conditional quantile functions for wages corresponding to different levels of education.  相似文献   

6.
An important problem in epidemiology and medical research is the estimation of the causal effect of a treatment action at a single point in time on the mean of an outcome, possibly within strata of the target population defined by a subset of the baseline covariates. Current approaches to this problem are based on marginal structural models, i.e. parametric models for the marginal distribution of counterfactual outcomes as a function of treatment and effect modifiers. The various estimators developed in this context furthermore each depend on a high-dimensional nuisance parameter whose estimation currently also relies on parametric models. Since misspecification of any of these models can lead to severely biased estimates of causal effects, the dependence of current methods on such parametric models represents a major limitation.  相似文献   

7.
Recurrent event data are commonly encountered in longitudinal studies when events occur repeatedly over time for each study subject. An accelerated failure time (AFT) model on the sojourn time between recurrent events is considered in this article. This model assumes that the covariate effect and the subject-specific frailty are additive on the logarithm of sojourn time, and the covariate effect maintains the same over distinct episodes, while the distributions of the frailty and the random error in the model are unspecified. With the ordinal nature of recurrent events, two scale transformations of the sojourn times are derived to construct semiparametric methods of log-rank type for estimating the marginal covariate effects in the model. The proposed estimation approaches/inference procedures also can be extended to the bivariate events, which alternate themselves over time. Examples and comparisons are presented to illustrate the performance of the proposed methods.  相似文献   

8.
Maximum pseudolikelihood (MPL) estimators are useful alternatives to maximum likelihood (ML) estimators when likelihood functions are more difficult to manipulate than their marginal and conditional components. Furthermore, MPL estimators subsume a large number of estimation techniques including ML estimators, maximum composite marginal likelihood estimators, and maximum pairwise likelihood estimators. When considering only the estimation of discrete models (on a possibly countably infinite support), we show that a simple finiteness assumption on an entropy-based measure is sufficient for assessing the consistency of the MPL estimator. As a consequence, we demonstrate that the MPL estimator of any discrete model on a bounded support will be consistent. Our result is valid in parametric, semiparametric, and nonparametric settings.  相似文献   

9.
In the analysis of recurrent events where the primary interest lies in studying covariate effects on the expected number of events occurring over a period of time, it is appealing to base models on the cumulative mean function (CMF) of the processes (Lawless & Nadeau 1995). In many chronic diseases, however, more than one type of event is manifested. Here we develop a robust inference procedure for joint regression models for the CMFs arising from a bivariate point process. Consistent parameter estimates with robust variance estimates are obtained via unbiased estimating functions for the CMFs. In most situations, the covariance structure of the bivariate point processes is difficult to specify correctly, but when it is known, an optimal estimating function for the CMFs can be obtained. As a convenient model for more general settings, we suggest the use of the estimating functions arising from bivariate mixed Poisson processes. Simulation studies demonstrate that the estimators based on this working model are practically unbiased with robust variance estimates. Furthermore, hypothesis tests may be based on the generalized Wald or generalized score tests. Data from a trial of patients with bronchial asthma are analyzed to illustrate the estimation and inference procedures.  相似文献   

10.
We consider situations where subjects in a longitudinal study experience recurrent events. However, the events are observed only in the form of counts for intervals which can vary across subjects. Methods for estimating the mean and rate functions of the recurrent-event processes are presented, based on loglinear regression models which incorporate piecewise-constant baseline rate functions. Robust methods and methods based on mixed Poisson processes are compared in a simulation study and in an example involving superficial bladder tumours in humans. Both approaches provide a simple and effective way to deal with interval-grouped data.  相似文献   

11.
In biomedical studies where the event of interest is recurrent (e.g., hospitalization), it is often the case that the recurrent event sequence is subject to being stopped by a terminating event (e.g., death). In comparing treatment options, the marginal recurrent event mean is frequently of interest. One major complication in the recurrent/terminal event setting is that censoring times are not known for subjects observed to die, which renders standard risk set based methods of estimation inapplicable. We propose two semiparametric methods for estimating the difference or ratio of treatment-specific marginal mean numbers of events. The first method involves imputing unobserved censoring times, while the second methods uses inverse probability of censoring weighting. In each case, imbalances in the treatment-specific covariate distributions are adjusted out through inverse probability of treatment weighting. After the imputation and/or weighting, the treatment-specific means (then their difference or ratio) are estimated nonparametrically. Large-sample properties are derived for each of the proposed estimators, with finite sample properties assessed through simulation. The proposed methods are applied to kidney transplant data.  相似文献   

12.
Abstract.  Censored recurrent event data frequently arise in biomedical studies. Often, the events are not homogenous, and may be categorized. We propose semiparametric regression methods for analysing multiple-category recurrent event data and consider the setting where event times are always known, but the information used to categorize events may be missing. Application of existing methods after censoring events of unknown category (i.e. 'complete-case' methods) produces consistent estimators only when event types are missing completely at random, an assumption which will frequently fail in practice. We propose methods, based on weighted estimating equations, which are applicable when event category missingness is missing at random. Parameter estimators are shown to be consistent and asymptotically normal. Finite sample properties are examined through simulations and the proposed methods are applied to an end-stage renal disease data set obtained from a national organ failure registry.  相似文献   

13.
A model to accommodate time-to-event ordinal outcomes was proposed by Berridge and Whitehead. Very few studies have adopted this approach, despite its appeal in incorporating several ordered categories of event outcome. More recently, there has been increased interest in utilizing recurrent events to analyze practical endpoints in the study of disease history and to help quantify the changing pattern of disease over time. For example, in studies of heart failure, the analysis of a single fatal event no longer provides sufficient clinical information to manage the disease. Similarly, the grade/frequency/severity of adverse events may be more important than simply prolonged survival in studies of toxic therapies in oncology. We propose an extension of the ordinal time-to-event model to allow for multiple/recurrent events in the case of marginal models (where all subjects are at risk for each recurrence, irrespective of whether they have experienced previous recurrences) and conditional models (subjects are at risk of a recurrence only if they have experienced a previous recurrence). These models rely on marginal and conditional estimates of the instantaneous baseline hazard and provide estimates of the probabilities of an event of each severity for each recurrence over time. We outline how confidence intervals for these probabilities can be constructed and illustrate how to fit these models and provide examples of the methods, together with an interpretation of the results.  相似文献   

14.
In many medical studies, patients may experience several events during follow-up. The times between consecutive events (gap times) are often of interest and lead to problems that have received much attention recently. In this work, we consider the estimation of the bivariate distribution function for censored gap times. Some related problems such as the estimation of the marginal distribution of the second gap time and the conditional distribution are also discussed. In this article, we introduce a nonparametric estimator of the bivariate distribution function based on Bayes’ theorem and Kaplan–Meier survival function and explore the behavior of the four estimators through simulations. Real data illustration is included.  相似文献   

15.
Frequently in clinical and epidemiologic studies, the event of interest is recurrent (i.e., can occur more than once per subject). When the events are not of the same type, an analysis which accounts for the fact that events fall into different categories will often be more informative. Often, however, although event times may always be known, information through which events are categorized may potentially be missing. Complete‐case methods (whose application may require, for example, that events be censored when their category cannot be determined) are valid only when event categories are missing completely at random. This assumption is rather restrictive. The authors propose two multiple imputation methods for analyzing multiple‐category recurrent event data under the proportional means/rates model. The use of a proper or improper imputation technique distinguishes the two approaches. Both methods lead to consistent estimation of regression parameters even when the missingness of event categories depends on covariates. The authors derive the asymptotic properties of the estimators and examine their behaviour in finite samples through simulation. They illustrate their approach using data from an international study on dialysis.  相似文献   

16.
Recurrent event data are often encountered in biomedical research, for example, recurrent infections or recurrent hospitalizations for patients after renal transplant. In many studies, there are more than one type of events of interest. Cai and Schaube (Lifetime Data Anal 10:121-138, 2004) advocated a proportional marginal rate model for multiple type recurrent event data. In this paper, we propose a general additive marginal rate regression model. Estimating equations approach is used to obtain the estimators of regression coefficients and baseline rate function. We prove the consistency and asymptotic normality of the proposed estimators. The finite sample properties of our estimators are demonstrated by simulations. The proposed methods are applied to the India renal transplant study to examine risk factors for bacterial, fungal and viral infections.  相似文献   

17.
Summary.  Recurrent events models have had considerable attention recently. The majority of approaches show the consistency of parameter estimates under the assumption that censoring is independent of the recurrent events process of interest conditional on the covariates that are included in the model. We provide an overview of available recurrent events analysis methods and present an inverse probability of censoring weighted estimator for the regression parameters in the Andersen–Gill model that is commonly used for recurrent event analysis. This estimator remains consistent under informative censoring if the censoring mechanism is estimated consistently, and it generally improves on the naïve estimator for the Andersen–Gill model in the case of independent censoring. We illustrate the bias of ad hoc estimators in the presence of informative censoring with a simulation study and provide a data analysis of recurrent lung exacerbations in cystic fibrosis patients when some patients are lost to follow-up.  相似文献   

18.
Recurrent event data often arise in biomedical studies, with examples including hospitalizations, infections, and treatment failures. In observational studies, it is often of interest to estimate the effects of covariates on the marginal recurrent event rate. The majority of existing rate regression methods assume multiplicative covariate effects. We propose a semiparametric model for the marginal recurrent event rate, wherein the covariates are assumed to add to the unspecified baseline rate. Covariate effects are summarized by rate differences, meaning that the absolute effect on the rate function can be determined from the regression coefficient alone. We describe modifications of the proposed method to accommodate a terminating event (e.g., death). Proposed estimators of the regression parameters and baseline rate are shown to be consistent and asymptotically Gaussian. Simulation studies demonstrate that the asymptotic approximations are accurate in finite samples. The proposed methods are applied to a state-wide kidney transplant data set.  相似文献   

19.
In many biomedical studies with recurrent events, some markers can only be measured when events happen. For example, medical cost attributed to hospitalization can only incur when patients are hospitalized. Such marker data are contingent on recurrent events. In this paper, we present a proportional means model for modelling the markers using the observed covariates contingent on the recurrent event. We also model the recurrent event via a marginal rate model. Estimating equations are constructed to derive the point estimators for the parameters in the proposed models. The estimators are shown to be asymptotically normal. Simulation studies are conducted to examine the finite-sample properties of the proposed estimators and the proposed method is applied to a data set from the Vitamin A Community Trial.  相似文献   

20.
Summary.  There is a large literature on methods of analysis for randomized trials with noncompliance which focuses on the effect of treatment on the average outcome. The paper considers evaluating the effect of treatment on the entire distribution and general functions of this effect. For distributional treatment effects, fully non-parametric and fully parametric approaches have been proposed. The fully non-parametric approach could be inefficient but the fully parametric approach is not robust to the violation of distribution assumptions. We develop a semiparametric instrumental variable method based on the empirical likelihood approach. Our method can be applied to general outcomes and general functions of outcome distributions and allows us to predict a subject's latent compliance class on the basis of an observed outcome value in observed assignment and treatment received groups. Asymptotic results for the estimators and likelihood ratio statistic are derived. A simulation study shows that our estimators of various treatment effects are substantially more efficient than the currently used fully non-parametric estimators. The method is illustrated by an analysis of data from a randomized trial of an encouragement intervention to improve adherence to prescribed depression treatments among depressed elderly patients in primary care practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号