首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
2.
Let X1, X2, … be a strictly stationary sequence of observations, and g be the joint density of (X1, …, Xd) for some fixed d ? 1. We consider kernel estimators of the density g. The asymptotic behaviour of the mean integrated squared error of the kernel estimators is obtained under an assumption of weak dependence between the observations.  相似文献   

3.
This paper describes the derivation of the analytical expression for the integrated squared density partial derivative (ISDPD) in a multivariate normal mixture model. The analytical expression of the ISDPD is derived for arbitrary dimensions with partial derivative orders up to four. Although the value of the ISDPD can be obtained by using the common numerical integration via mathematical software (such as Maple, Mathematica, Matlab, etc), it suffers from the limitation of computation time when the dimension or the number of mixture components of the considered multivariate normal mixture model are large. Moreover, numerical comparison indicates the benefits of speed offered by our proposed analytical expression are far superior to the numerical integration performed by Maple. With this analytical expression, the ISDPD can apace be calculated with no assistance of numerical integration.  相似文献   

4.
Kraft, Lepage, and van Eeden (1985) have suggested using a symmetrized version of the kernel estimator when the true density f of the observation is known to be symmetric around a possibly unknown point θ. The effect of this symmetrization device depends on the smoothness of f * f(x) = f f(x+t)f(t) dt at zero. We show that if θ has to be estimated and if f is not absolutely continuous, symmetrization may deteriorate the estimate.  相似文献   

5.
The traditional confidence interval associated with the ordinary least squares estimator of linear regression coefficient is sensitive to non-normality of the underlying distribution. In this article, we develop a novel kernel density estimator for the ordinary least squares estimator via utilizing well-defined inversion based kernel smoothing techniques in order to estimate the conditional probability density distribution of the dependent random variable. Simulation results show that given a small sample size, our method significantly increases the power as compared with Wald-type CIs. The proposed approach is illustrated via an application to a classic small data set originally from Graybill (1961 Graybill, F.A. (1961). Introduction to Linear Statistical Models. Vol. 1. New York: McGraw-Hill Book Company. [Google Scholar]).  相似文献   

6.
This article is concerned with nonparametric estimation of the entropy in ranked set sampling. Theoretical properties of the proposed estimator are studied. The proposed estimator is compared with the rival estimator in simple random sampling. The applications of the proposed estimator to the mutual information estimation as well as estimation of the Kullback–Leibler divergence are provided. Several Monté-Carlo simulation studies are conducted to examine the performance of the estimator. The results are applied to the longleaf pine (Pinus palustris) trees and the body fat percentage datasets to illustrate applicability of theoretical results.  相似文献   

7.
The author considers density estimation from contaminated data where the measurement errors come from two very different sources. A first error, of Berkson type, is incurred before the experiment: the variable X of interest is unobservable and only a surrogate can be measured. A second error, of classical type, is incurred after the experiment: the surrogate can only be observed with measurement error. The author develops two nonparametric estimators of the density of X, valid whenever Berkson, classical or a mixture of both errors are present. Rates of convergence of the estimators are derived and a fully data‐driven procedure is proposed. Finite sample performance is investigated via simulations and on a real data example.  相似文献   

8.
This paper studies bandwidth selection for kernel estimation of derivatives of multidimensional conditional densities, a non-parametric realm unexplored in the literature. This paper extends Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014] in its examination of conditional multivariate densities, derives and presents criteria for arbitrary kernel order and density dimension, shows consistency of the estimators, and investigates a minimization criterion which jointly estimates numerator and denominator bandwidths. I conduct a Monte Carlo simulation study for various orders of kernels in the Gaussian family and compare the new cross validation criterion with those implied by Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014]. The paper finds that higher order kernels become increasingly important as the dimension of the distribution increases. I find that the cross validation criterion developed in this paper that jointly estimates the derivative of the joint density (numerator) and the marginal density (denominator) does orders of magnitude better than criteria that estimate the bandwidths separately. I further find that using the infinite order Dirichlet kernel tends to have the best results.  相似文献   

9.
Measurement errors occur in many real data applications. In this paper, the linear and the non linear wavelet estimators of the derivatives of the density function are constructed in the case of data contaminated with heteroscedastic measurement errors. We establish Lp risk performance of the estimators and show that they achieve fast convergence rates under quite general conditions.  相似文献   

10.
A class of estimators of the variance σ1 2 of a normal population is introduced, by utilization the information in a sample from a second normal population with different mean and variance σ2 2, under the restriction that σ1 2?≤?σ2 2. Simulation results indicate that some members of this class are more efficient than the usual minimum variance unbiased estimator (MVUE) of σ1 2, Stein estimator and Mehta and Gurland estimator. The case of known and unknown means are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号