首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years physiologically based pharmacokinetic models have come to play an increasingly important role in risk assessment for carcinogens. The hope is that they can help open the black box between external exposure and carcinogenic effects to experimental observations, and improve both high-dose to low-dose and interspecies projections of risk. However, to date, there have been only relatively preliminary efforts to assess the uncertainties in current modeling results. In this paper we compare the physiologically based pharmacokinetic models (and model predictions of risk-related overall metabolism) that have been produced by seven different sets of authors for perchloroethylene (tetrachloroethylene). The most striking conclusion from the data is that most of the differences in risk-related model predictions are attributable to the choice of the data sets used for calibrating the metabolic parameters. Second, it is clear that the bottom-line differences among the model predictions are appreciable. Overall, the ratios of low-dose human to bioassay rodent metabolism spanned a 30-fold range for the six available human/rat comparisons, and the seven predicted ratios of low-dose human to bioassay mouse metabolism spanned a 13-fold range. (The greater range for the rat/human comparison is attributable to a structural assumption by one author group of competing linear and saturable pathways, and their conclusion that the dangerous saturable pathway constitutes a minor fraction of metabolism in rats.) It is clear that there are a number of opportunities for modelers to make different choices of model structure, interpretive assumptions, and calibrating data in the process of constructing pharmacokinetic models for use in estimating "delivered" or "biologically effective" dose for carcinogenesis risk assessments. We believe that in presenting the results of such modeling studies, it is important for researchers to explore the results of alternative, reasonably likely approaches for interpreting the available data--and either show that any conclusions they make are relatively insensitive to particular interpretive choices, or to acknowledge the differences in conclusions that would result from plausible alternative views of the world.  相似文献   

2.
A two-step methodology is described to make a health-based determination for the bathing and showering use of the water from a private well contaminated with volatile organic chemicals. The chemical perchloroethylene (PERC) is utilized to illustrate the approach. First, a chemical-specific exposure model is used to predict the concentration of PERC in the shower air, shower water, and in the air above the bathtub. Second, a physiologically based pharmacokinetic (PBPK) model is used to predict the concentration of PERC delivered to the target tissue, the brain, since the focus is on neurological endpoints. The simulation exercise includes concurrent dermal and inhalation routes of exposure. A reference target tissue level (RTTL) in the brain is estimated using the PBPK model. A hazard index based on this benchmark guideline is used to make a regulatory determination for bathing and showering use of the contaminated water.  相似文献   

3.
Using physiologically-based pharmacokinetic (PBPK) modeling, occupational, personal, and environmental benzene exposure scenarios are simulated for adult men and women. This research identifies differences in internal exposure due to physiological and biochemical gender differences. Physiological and chemical-specific model parameters were obtained from other studies reported in the literature and medical texts for the subjects of interest. Women were found to have a higher blood/air partition coefficient and maximum velocity of metabolism for benzene than men (the two most sensitive parameters affecting gender-specific differences). Additionally, women generally have a higher body fat percentage than men. These factors influence the internal exposure incurred by the subjects and should be considered when conducting a risk assessment. Results demonstrated that physicochemical gender differences result in women metabolizing 23–26% more benzene than men when subject to the same exposure scenario even though benzene blood concentration levels are generally higher in men. These results suggest that women may be at significantly higher risk for certain effects of benzene exposure. Thus, exposure standards based on data from male subjects may not be protective for the female population.  相似文献   

4.
5.
In earlier work we assembled a database of classical pharmacokinetic parameters (e.g., elimination half-lives; volumes of distribution) in children and adults. These data were then analyzed to define mean differences between adults and children of various age groups. In this article, we first analyze the variability in half-life observations where individual data exist. The major findings are as follows. The age groups defined in the earlier analysis of arithmetic mean data (0-1 week premature; 0-1 week full term; 1 week to 2 months; 2-6 months; 6 months to 2 years; 2-12 years; and 12-18 years) are reasonable for depicting child/adult pharmacokinetic differences, but data for some of the earliest age groups are highly variable. The fraction of individual children's half-lives observed to exceed the adult mean half-life by more than the 3.2-fold uncertainty factor commonly attributed to interindividual pharmacokinetic variability is 27% (16/59) for the 0-1 week age group, and 19% (5/26) in the 1 week to 2 month age group, compared to 0/87 for all the other age groups combined between 2 months and 18 years. Children within specific age groups appear to differ from adults with respect to the amount of variability and the form of the distribution of half-lives across the population. The data indicate departure from simple unimodal distributions, particularly in the 1 week to 2 month age group, suggesting that key developmental steps affecting drug removal tend to occur in that period. Finally, in preparation for age-dependent physiologically-based pharmacokinetic modeling, nationally representative NHANES III data are analyzed for distributions of body size and fat content. The data from about age 3 to age 10 reveal important departures from simple unimodal distributional forms-in the direction suggesting a subpopulation of children that are markedly heavier than those in the major mode. For risk assessment modeling, this means that analysts will need to consider "mixed" distributions (e.g., two or more normal or log-normal modes) in which the proportions of children falling within the major versus highweight/fat modes in the mixture changes as a function of age. Biologically, the most natural interpretation of this is that these subpopulations represent children who have or have not yet received particular signals for change in growth pattern. These apparently distinct subpopulations would be expected to exhibit different disposition of xenobiotics, particularly those that are highly lipophilic and poorly metabolized.  相似文献   

6.
Although analysis of in vivo pharmacokinetic data necessitates use of time-dependent physiologically-based pharmacokinetic (PBPK) models, risk assessment applications are often driven primarily by steady-state and/or integrated (e.g., AUC) dosimetry. To that end, we present an analysis of steady-state solutions to a PBPK model for a generic volatile chemical metabolized in the liver. We derive an equivalent model that is much simpler and contains many fewer parameters than the full PBPK model. The state of the system can be specified by two state variables-the rate of metabolism and the rate of clearance by exhalation. For a given oral dose rate or inhalation exposure concentration, the system state only depends on the blood-air partition coefficient, metabolic constants, and the rates of blood flow to the liver and of alveolar ventilation. At exposures where metabolism is close to linear, only the effective first-order metabolic rate is needed. Furthermore, in this case, the relationship between cumulative exposure and average internal dose (e.g., AUCs) remains the same for time-varying exposures. We apply our analysis to oral-inhalation route extrapolation, showing that for any dose metric, route equivalence only depends on the parameters that determine the system state. Even if the appropriate dose metric is unknown, bounds can be placed on the route-to-route equivalence with very limited data. We illustrate this analysis by showing that it reproduces exactly the PBPK-model-based route-to-route extrapolation in EPA's 2000 risk assessment for vinyl chloride. Overall, we find that in many cases, steady-state solutions exactly reproduce or closely approximate the solutions using the full PBPK model, while being substantially more transparent. Subsequent work will examine the utility of steady-state solutions for analyzing cross-species extrapolation and intraspecies variability.  相似文献   

7.
The paper observes that the term ‘business model’ has been incorporated in recent financial reporting regulations. The first section of the paper describes various meanings of ‘business model’ and demonstrates that the term has no settled or agreed meaning. The second part of the paper considers the suitability of the term ‘business model’ as a basis for a measurement standard (IFRS 9) or for requirements for narrative reporting and concludes it is not suitable for either purpose. Examples from the UK FTSE 100 index companies are used to illustrate existing usage in narrative reporting, finding varying levels of informativeness of disclosures about business models. The final part of the paper discusses reasons for incorporating an ambiguous and contested term in reporting guidance. It identifies parallels with ambiguity in other branches of financial reporting and the potential utility of ambiguity in allowing consensus to be arrived at on a form of words, apparently tightening up reporting regulation, while allowing participants ‘wiggle room’.  相似文献   

8.
A physiologically-based pharmacokinetic (PBPK) model for a mixture of toluene (TOL) and xylene (XYL), developed and validated in the rat, was used to predict the uptake and disposition kinetics of TOL/XYL mixture in humans. This was accomplished by substituting the rat physiological parameters and the blood:air partition coefficient with those of humans, scaling the maximal velocity for hepatic metabolism on the basis of body weight0.75, and keeping all other model parameters species-invariant. The human TOL/XYL mixture PBPK model, developed based on the quantitative biochemical mechanism of interaction elucidated in the rat (i.e., competitive metabolic inhibition), simulated adequately the kinetics of TOL and XYL during combined exposures in humans. The simulations with this PBPK model indicate that an eight hour co-exposure to concentrations that remain within the current threshold limit values of TOL (50 ppm) and XYL (100 ppm) would not result in significant pharmacokinetic interferences, thus implying that data on biological monitoring of worker exposure to these solvents would be unaffected during co-exposures.  相似文献   

9.
Comprehensive uncertainty analyses of complex models of environmental and biological systems are essential but often not feasible due to the computational resources they require. "Traditional" methods, such as standard Monte Carlo and Latin Hypercube Sampling, for propagating uncertainty and developing probability densities of model outputs, may in fact require performing a prohibitive number of model simulations. An alternative is offered, for a wide range of problems, by the computationally efficient "Stochastic Response Surface Methods (SRSMs)" for uncertainty propagation. These methods extend the classical response surface methodology to systems with stochastic inputs and outputs. This is accomplished by approximating both inputs and outputs of the uncertain system through stochastic series of "well behaved" standard random variables; the series expansions of the outputs contain unknown coefficients which are calculated by a method that uses the results of a limited number of model simulations. Two case studies are presented here involving (a) a physiologically-based pharmacokinetic (PBPK) model for perchloroethylene (PERC) for humans, and (b) an atmospheric photochemical model, the Reactive Plume Model (RPM-IV). The results obtained agree closely with those of traditional Monte Carlo and Latin Hypercube Sampling methods, while significantly reducing the required number of model simulations.  相似文献   

10.
Reassessing Benzene Cancer Risks Using Internal Doses   总被引:1,自引:0,他引:1  
Human cancer risks from benzene exposure have previously been estimated by regulatory agencies based primarily on epidemiological data, with supporting evidence provided by animal bioassay data. This paper reexamines the animal-based risk assessments for benzene using physiologically-based pharmacokinetic (PBPK) models of benzene metabolism in animals and humans. It demonstrates that internal doses (interpreted as total benzene metabolites formed) from oral gavage experiments in mice are well predicted by a PBPK model developed by Travis et al. Both the data and the model outputs can also be accurately described by the simple nonlinear regression model total metabolites = 76.4x/(80.75 + x), where x = administered dose in mg/kg/day. Thus, PBPK modeling validates the use of such nonlinear regression models, previously used by Bailer and Hoel. An important finding is that refitting the linearized multistage (LMS) model family to internal doses and observed responses changes the maximum-likelihood estimate (MLE) dose-response curve for mice from linear-quadratic to cubic, leading to low-dose risk estimates smaller than in previous risk assessments. This is consistent with the conclusion for mice from the Bailer and Hoel analysis. An innovation in this paper is estimation of internal doses for humans based on a PBPK model (and the regression model approximating it) rather than on interspecies dose conversions. Estimates of human risks at low doses are reduced by the use of internal dose estimates when the estimates are obtained from a PBPK model, in contrast to Bailer and Hoel's findings based on interspecies dose conversion. Sensitivity analyses and comparisons with epidemiological data and risk models suggest that our finding of a nonlinear MLE dose-response curve at low doses is robust to changes in assumptions and more consistent with epidemiological data than earlier risk models.  相似文献   

11.
Estimation of uncertainties associated with model predictions is an important component of the application of environmental and biological models. "Traditional" methods for propagating uncertainty, such as standard Monte Carlo and Latin Hypercube Sampling, however, often require performing a prohibitive number of model simulations, especially for complex, computationally intensive models. Here, a computationally efficient method for uncertainty propagation, the Stochastic Response Surface Method (SRSM) is coupled with another method, the Automatic Differentiation of FORTRAN (ADIFOR). The SRSM is based on series expansions of model inputs and outputs in terms of a set of "well-behaved" standard random variables. The ADIFOR method is used to transform the model code into one that calculates the derivatives of the model outputs with respect to inputs or transformed inputs. The calculated model outputs and the derivatives at a set of sample points are used to approximate the unknown coefficients in the series expansions of outputs. A framework for the coupling of the SRSM and ADIFOR is developed and presented here. Two case studies are presented, involving (1) a physiologically based pharmacokinetic model for perchloroethylene for humans, and (2) an atmospheric photochemical model, the Reactive Plume Model. The results obtained agree closely with those of traditional Monte Carlo and Latin hypercube sampling methods, while reducing the required number of model simulations by about two orders of magnitude.  相似文献   

12.
Chemical risk protection in the workplace relies partly on informing workers about possible risks using material safety data sheets (MSDS). This article reports on phase 2 of a project (phase 1 reported in Cox et al.), which employed a mental models approach to improve on data sheets as communicative interventions for perchloroethylene in dry cleaning and rosin-based solder flux in the electronics industry within small businesses in the United Kingdom (small enterprises (SEs) < 25 employees in the workplace). It focuses on the efficacy of a multimethod evaluation strategy to assess (1) the capacity of a mental models approach to yield contextually relevant data for intervention design and (2) the effectiveness of the strategy itself in validating the mental models data. The evaluation was conducted using postal questionnaires and semi-structured verbal protocols to provide responses to the alternative intervention content and to prioritize risk messages. User discussion groups were then employed, particularly as a means of establishing whether contextual information could be obtained that would differ qualitatively from the kind elicited through individual (semi) structured methods. We conclude that the mental models approach as part of an iterative process including systematic multimethod evaluation is successful in supporting the design of relevant communications to the users of chemicals. The overall viability of communicative interventions in the context of health and safety in small businesses remains in question. Future research might aim to develop a more holistic approach to interventions in complex occupational contexts.  相似文献   

13.
Cakmak  Sabit  Burnett  Richard T.  Krewski  Daniel 《Risk analysis》1999,19(3):487-496
The association between daily fluctuations in ambient particulate matter and daily variations in nonaccidental mortality have been extensively investigated. Although it is now widely recognized that such an association exists, the form of the concentration–response model is still in question. Linear, no threshold and linear threshold models have been most commonly examined. In this paper we considered methods to detect and estimate threshold concentrations using time series data of daily mortality rates and air pollution concentrations. Because exposure is measured with error, we also considered the influence of measurement error in distinguishing between these two completing model specifications. The methods were illustrated on a 15-year daily time series of nonaccidental mortality and particulate air pollution data in Toronto, Canada. Nonparametric smoothed representations of the association between mortality and air pollution were adequate to graphically distinguish between these two forms. Weighted nonlinear regression methods for relative risk models were adequate to give nearly unbiased estimates of threshold concentrations even under conditions of extreme exposure measurement error. The uncertainty in the threshold estimates increased with the degree of exposure error. Regression models incorporating threshold concentrations could be clearly distinguished from linear relative risk models in the presence of exposure measurement error. The assumption of a linear model given that a threshold model was the correct form usually resulted in overestimates in the number of averted premature deaths, except for low threshold concentrations and large measurement error.  相似文献   

14.
A Bayesian approach, implemented using Markov Chain Monte Carlo (MCMC) analysis, was applied with a physiologically‐based pharmacokinetic (PBPK) model of methylmercury (MeHg) to evaluate the variability of MeHg exposure in women of childbearing age in the U.S. population. The analysis made use of the newly available National Health and Nutrition Survey (NHANES) blood and hair mercury concentration data for women of age 16–49 years (sample size, 1,582). Bayesian analysis was performed to estimate the population variability in MeHg exposure (daily ingestion rate) implied by the variation in blood and hair concentrations of mercury in the NHANES database. The measured variability in the NHANES blood and hair data represents the result of a process that includes interindividual variation in exposure to MeHg and interindividual variation in the pharmacokinetics (distribution, clearance) of MeHg. The PBPK model includes a number of pharmacokinetic parameters (e.g., tissue volumes, partition coefficients, rate constants for metabolism and elimination) that can vary from individual to individual within the subpopulation of interest. Using MCMC analysis, it was possible to combine prior distributions of the PBPK model parameters with the NHANES blood and hair data, as well as with kinetic data from controlled human exposures to MeHg, to derive posterior distributions that refine the estimates of both the population exposure distribution and the pharmacokinetic parameters. In general, based on the populations surveyed by NHANES, the results of the MCMC analysis indicate that a small fraction, less than 1%, of the U.S. population of women of childbearing age may have mercury exposures greater than the EPA RfD for MeHg of 0.1 μg/kgg/day, and that there are few, if any, exposures greater than the ATSDR MRL of 0.3 μgg/kgg/day. The analysis also indicates that typical exposures may be greater than previously estimated from food consumption surveys, but that the variability in exposure within the population of U.S. women of childbearing age may be less than previously assumed.  相似文献   

15.
Trichloroacetic acid (TCA) is major metabolite of trichloroethylene (TRI) thought to contribute to its hepatocarcinogenic effects in mice. Recent studies have shown that peak blood concentrations of TCA in rats do not occur until approximately 12 hours following an oral dose of TRI. However, blood concentrations of TRI reach maximum within an hour and are nondetectable after 2 hours.(1) The results of study which examined the enterohepatic recirculation (EHC) of the principle TRI metabolited(2) was used to develop physiologically-based pharmacokinetic model for TRI, which includes enterohepatic recirculation of its metabolites. The model quantitatively predicts the uptake, distribution and elimination of TRI, trichloroethanol, trichloroethanol-glucuronide, and TCA and includes production of metabolites through the enterohepatic recirculation pathway. Physiologic parameters used in the model were obtained from the literature.(3.4) Parameters for TRI metabolism were taken from Fisher et al.(5) Other kinetic parameters were found in the literature or estimated from experimental data.(2) The model was calibrated to data from experiments of an earlier study where TRI was orally administered(2) Verification of the model was conducted using data on the enterohepatic recirculation of TCEOH and TCA(2) chloral hydrate data (infusion doses) from Merdink,(1) and TRI data from Templin(l) and Larson and Bull.(1)  相似文献   

16.
Robert M. Park 《Risk analysis》2020,40(12):2561-2571
Uncertainty in model predictions of exposure response at low exposures is a problem for risk assessment. A particular interest is the internal concentration of an agent in biological systems as a function of external exposure concentrations. Physiologically based pharmacokinetic (PBPK) models permit estimation of internal exposure concentrations in target tissues but most assume that model parameters are either fixed or instantaneously dose-dependent. Taking into account response times for biological regulatory mechanisms introduces new dynamic behaviors that have implications for low-dose exposure response in chronic exposure. A simple one-compartment simulation model is described in which internal concentrations summed over time exhibit significant nonlinearity and nonmonotonicity in relation to external concentrations due to delayed up- or downregulation of a metabolic pathway. These behaviors could be the mechanistic basis for homeostasis and for some apparent hormetic effects.  相似文献   

17.
Pharmacokinetic models which incorporate independently measured anatomical characteristics and physiological flows have been widely used to predict the pharmacokinetic behavior of drugs, anesthetics, and other chemicals. Models appearing in the literature have included as many as 18,(1) or as few as 5 tissue compartments.(2) With the exception of the multiple-compartment delay trains used by Bischoff(3) to model the delays inherent to the appearance of drug metabolites in bile and segments of the intestinal lumen, very little effort has been made to incorporate the available information on gastrointestinal anatomy and physiology into more accurate gastrointestinal absorption/enterohepatic recirculation submodels. Since several authors have shown that the lymphatic system is the most significant route of absorption for highly lipophilic chemicals, we have constructed a model of gastrointestinal absorption that emphasizes chylomicron production and transport as the most significant route of absorption for nonvolatile, lipophilic chemicals. The absorption and distribution of hexachlorobenzene after intravenous vs. oral dosing are used to demonstrate features of this model.  相似文献   

18.
Physiologically-based toxicokinetic (PBTK) models are widely used to quantify whole-body kinetics of various substances. However, since they attempt to reproduce anatomical structures and physiological events, they have a high number of parameters. Their identification from kinetic data alone is often impossible, and other information about the parameters is needed to render the model identifiable. The most commonly used approach consists of independently measuring, or taking from literature sources, some of the parameters, fixing them in the kinetic model, and then performing model identification on a reduced number of less certain parameters. This results in a substantial reduction of the degrees of freedom of the model. In this study, we show that this method results in final estimates of the free parameters whose precision is overestimated. We then compared this approach with an empirical Bayes approach, which takes into account not only the mean value, but also the error associated with the independently determined parameters. Blood and breath 2H8-toluene washout curves, obtained in 17 subjects, were analyzed with a previously presented PBTK model suitable for person-specific dosimetry. Model parameters with the greatest effect on predicted levels were alveolar ventilation rate QPC, fat tissue fraction VFC, blood-air partition coefficient Kb, fraction of cardiac output to fat Qa/co and rate of extrahepatic metabolism Vmax-p. Differences in the measured and Bayesian-fitted values of QPC, VFC and Kb were significant (p < 0.05), and the precision of the fitted values Vmax-p and Qa/co went from 11 ± 5% to 75 ± 170% (NS) and from 8 ± 2% to 9 ± 2% (p < 0.05) respectively. The empirical Bayes approach did not result in less reliable parameter estimates: rather, it pointed out that the precision of parameter estimates can be overly optimistic when other parameters in the model, either directly measured or taken from literature sources, are treated as known without error. In conclusion, an empirical Bayes approach to parameter estimation resulted in a better model fit, different final parameter estimates, and more realistic parameter precisions.  相似文献   

19.
A screening approach is developed for volatile organic compounds (VOCs) to estimate exposures that correspond to levels measured in fluids and/or tissues in human biomonitoring studies. The approach makes use of a generic physiologically-based pharmacokinetic (PBPK) model coupled with exposure pattern characterization, Monte Carlo analysis, and quantitative structure property relationships (QSPRs). QSPRs are used for VOCs with minimal data to develop chemical-specific parameters needed for the PBPK model. The PBPK model is capable of simulating VOC kinetics following multiple routes of exposure, such as oral exposure via water ingestion and inhalation exposure during shower events. Using published human biomonitoring data of trichloroethylene (TCE), the generic model is evaluated to determine how well it estimates TCE concentrations in blood based on the known drinking water concentrations. In addition, Monte Carlo analysis is conducted to characterize the impact of the following factors: (1) uncertainties in the QSPR-estimated chemical-specific parameters; (2) variability in physiological parameters; and (3) variability in exposure patterns. The results indicate that uncertainty in chemical-specific parameters makes only a minor contribution to the overall variability and uncertainty in the predicted TCE concentrations in blood. The model is used in a reverse dosimetry approach to derive estimates of TCE concentrations in drinking water based on given measurements of TCE in blood, for comparison to the U.S. EPA's Maximum Contaminant Level in drinking water. This example demonstrates how a reverse dosimetry approach can be used to facilitate interpretation of human biomonitoring data in a health risk context by deriving external exposures that are consistent with a biomonitoring data set, thereby permitting comparison with health-based exposure guidelines.  相似文献   

20.
An analysis of the uncertainty in guidelines for the ingestion of methylmercury (MeHg) due to human pharmacokinetic variability was conducted using a physiologically based pharmacokinetic (PBPK) model that describes MeHg kinetics in the pregnant human and fetus. Two alternative derivations of an ingestion guideline for MeHg were considered: the U.S. Environmental Protection Agency reference dose (RfD) of 0.1 g/kg/day derived from studies of an Iraqi grain poisoning episode, and the Agency for Toxic Substances and Disease Registry chronic oral minimal risk level (MRL) of 0.5 g/kg/day based on studies of a fish-eating population in the Seychelles Islands. Calculation of an ingestion guideline for MeHg from either of these epidemiological studies requires calculation of a dose conversion factor (DCF) relating a hair mercury concentration to a chronic MeHg ingestion rate. To evaluate the uncertainty in this DCF across the population of U.S. women of child-bearing age, Monte Carlo analyses were performed in which distributions for each of the parameters in the PBPK model were randomly sampled 1000 times. The 1st and 5th percentiles of the resulting distribution of DCFs were a factor of 1.8 and 1.5 below the median, respectively. This estimate of variability is consistent with, but somewhat less than, previous analyses performed with empirical, one-compartment pharmacokinetic models. The use of a consistent factor in both guidelines of 1.5 for pharmacokinetic variability in the DCF, and keeping all other aspects of the derivations unchanged, would result in an RfD of 0.2 g/kg/day and an MRL of 0.3 g/kg/day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号