首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Let \(\mathbf {X} = (X_1,\ldots ,X_p)\) be a stochastic vector having joint density function \(f_{\mathbf {X}}(\mathbf {x})\) with partitions \(\mathbf {X}_1 = (X_1,\ldots ,X_k)\) and \(\mathbf {X}_2 = (X_{k+1},\ldots ,X_p)\). A new method for estimating the conditional density function of \(\mathbf {X}_1\) given \(\mathbf {X}_2\) is presented. It is based on locally Gaussian approximations, but simplified in order to tackle the curse of dimensionality in multivariate applications, where both response and explanatory variables can be vectors. We compare our method to some available competitors, and the error of approximation is shown to be small in a series of examples using real and simulated data, and the estimator is shown to be particularly robust against noise caused by independent variables. We also present examples of practical applications of our conditional density estimator in the analysis of time series. Typical values for k in our examples are 1 and 2, and we include simulation experiments with values of p up to 6. Large sample theory is established under a strong mixing condition.  相似文献   

5.
We introduce some new mathematical tools in the analysis of dispersion matrices of the two well-known OLSEs and BLUEs under general linear models with parameter restrictions. We first establish some formulas for calculating the ranks and inertias of the differences of OLSEs’ and BLUEs’ dispersion matrices of parametric functions under the general linear model \({\mathscr {M}}= \{\mathbf{y}, \ \mathbf{X }\pmb {\beta }, \ \pmb {\Sigma }\}\) and the constrained model \({\mathscr {M}}_r = \{\mathbf{y}, \, \mathbf{X }\pmb {\beta }\, | \, \mathbf{A }\pmb {\beta }= \mathbf{b}, \ \pmb {\Sigma }\}\), where \(\mathbf{A }\pmb {\beta }= \mathbf{b}\) is a consistent linear matrix equation for the unknown parameter vector \(\pmb {\beta }\) to satisfy. As applications, we derive necessary and sufficient conditions for many equalities and inequalities of OLSEs’ and BLUEs’ dispersion matrices to hold under \({\mathscr {M}}\) and \({\mathscr {M}}_r\).  相似文献   

6.
In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.  相似文献   

7.
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form \(X = g(\mathbf {U})\) where g is a deterministic function and \(\mathbf {U}\) can be a random finite- or infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator—in particular it has a finite variance as soon as there exists \(k \in \mathbb {R}> 1\) such that \({\text {E}}\left[ X^k \right] < \infty \). Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its running time. Finally we extensively study the case where X is heavy-tailed.  相似文献   

8.
Krämer (Sankhy $\bar{\mathrm{a }}$ 42:130–131, 1980) posed the following problem: “Which are the $\mathbf{y}$ , given $\mathbf{X}$ and $\mathbf{V}$ , such that OLS and Gauss–Markov are equal?”. In other words, the problem aimed at identifying those vectors $\mathbf{y}$ for which the ordinary least squares (OLS) and Gauss–Markov estimates of the parameter vector $\varvec{\beta }$ coincide under the general Gauss–Markov model $\mathbf{y} = \mathbf{X} \varvec{\beta } + \mathbf{u}$ . The problem was later called a “twist” to Kruskal’s Theorem, which provides conditions necessary and sufficient for the OLS and Gauss–Markov estimates of $\varvec{\beta }$ to be equal. The present paper focuses on a similar problem to the one posed by Krämer in the aforementioned paper. However, instead of the estimation of $\varvec{\beta }$ , we consider the estimation of the systematic part $\mathbf{X} \varvec{\beta }$ , which is a natural consequence of relaxing the assumption that $\mathbf{X}$ and $\mathbf{V}$ are of full (column) rank made by Krämer. Further results, dealing with the Euclidean distance between the best linear unbiased estimator (BLUE) and the ordinary least squares estimator (OLSE) of $\mathbf{X} \varvec{\beta }$ , as well as with an equality between BLUE and OLSE are also provided. The calculations are mostly based on a joint partitioned representation of a pair of orthogonal projectors.  相似文献   

9.
Assume that a linear random-effects model \(\mathbf{y}= \mathbf{X}\varvec{\beta }+ \varvec{\varepsilon }= \mathbf{X}(\mathbf{A}\varvec{\alpha }+ \varvec{\gamma }) + \varvec{\varepsilon }\) is transformed as \(\mathbf{T}\mathbf{y}= \mathbf{T}\mathbf{X}\varvec{\beta }+ \mathbf{T}\varvec{\varepsilon }= \mathbf{T}\mathbf{X}(\mathbf{A}\varvec{\alpha }+ \varvec{\gamma }) + \mathbf{T}\varvec{\varepsilon }\) by pre-multiplying a given matrix \(\mathbf{T}\) of arbitrary rank. These two models are not necessarily equivalent unless \(\mathbf{T}\) is of full column rank, and we have to work with this derived model in many situations. Because predictors/estimators of the parameter spaces under the two models are not necessarily the same, it is primary work to compare predictors/estimators in the two models and to establish possible links between the inference results obtained from two models. This paper presents a general algebraic approach to the problem of comparing best linear unbiased predictors (BLUPs) of parameter spaces in an original linear random-effects model and its transformations, and provides a group of fundamental and comprehensive results on mathematical and statistical properties of the BLUPs. In particular, we construct many equalities for the BLUPs under an original linear random-effects model and its transformations, and obtain necessary and sufficient conditions for the equalities to hold.  相似文献   

10.
Given a stationary multidimensional spatial process $\left\{ Z_{\mathbf{i}}=\left( X_{\mathbf{i}},\ Y_{\mathbf{i}}\right) \in \mathbb R ^d\right. \left. \times \mathbb R ,\mathbf{i}\in \mathbb Z ^{N}\right\} $ , we investigate a kernel estimate of the spatial conditional mode function of the response variable $Y_{\mathbf{i}}$ given the explicative variable $X_{\mathbf{i}}$ . Consistency in $L^p$ norm and strong convergence of the kernel estimate are obtained when the sample considered is a $\alpha $ -mixing sequence. An application to real data is given in order to illustrate the behavior of our methodology.  相似文献   

11.
We consider equalities between the ordinary least squares estimator ( $\mathrm {OLSE} $ ), the best linear unbiased estimator ( $\mathrm {BLUE} $ ) and the best linear unbiased predictor ( $\mathrm {BLUP} $ ) in the general linear model $\{ \mathbf y , \mathbf X \varvec{\beta }, \mathbf V \}$ extended with the new unobservable future value $ \mathbf y _{*}$ of the response whose expectation is $ \mathbf X _{*}\varvec{\beta }$ . Our aim is to provide some new insight and new proofs for the equalities under consideration. We also collect together various expressions, without rank assumptions, for the $\mathrm {BLUP} $ and provide new results giving upper bounds for the Euclidean norm of the difference between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {BLUE} ( \mathbf X _{*}\varvec{\beta })$ and between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {OLSE} ( \mathbf X _{*}\varvec{\beta })$ . A remark is made on the application to small area estimation.  相似文献   

12.
In this paper we consider an acceptance-rejection (AR) sampler based on deterministic driver sequences. We prove that the discrepancy of an N element sample set generated in this way is bounded by \(\mathcal {O} (N^{-2/3}\log N)\), provided that the target density is twice continuously differentiable with non-vanishing curvature and the AR sampler uses the driver sequence \(\mathcal {K}_M= \{( j \alpha , j \beta ) ~~ mod~~1 \mid j = 1,\ldots ,M\},\) where \(\alpha ,\beta \) are real algebraic numbers such that \(1,\alpha ,\beta \) is a basis of a number field over \(\mathbb {Q}\) of degree 3. For the driver sequence \(\mathcal {F}_k= \{ ({j}/{F_k}, \{{jF_{k-1}}/{F_k}\} ) \mid j=1,\ldots , F_k\},\) where \(F_k\) is the k-th Fibonacci number and \(\{x\}=x-\lfloor x \rfloor \) is the fractional part of a non-negative real number x, we can remove the \(\log \) factor to improve the convergence rate to \(\mathcal {O}(N^{-2/3})\), where again N is the number of samples we accepted. We also introduce a criterion for measuring the goodness of driver sequences. The proposed approach is numerically tested by calculating the star-discrepancy of samples generated for some target densities using \(\mathcal {K}_M\) and \(\mathcal {F}_k\) as driver sequences. These results confirm that achieving a convergence rate beyond \(N^{-1/2}\) is possible in practice using \(\mathcal {K}_M\) and \(\mathcal {F}_k\) as driver sequences in the acceptance-rejection sampler.  相似文献   

13.
Let \({\{X_n, n\geq 1\}}\) be a sequence of independent and identically distributed non-degenerated random variables with common cumulative distribution function F. Suppose X 1 is concentrated on 0, 1, . . . , N ≤ ∞ and P(X 1 = 1) > 0. Let \({X_{U_w(n)}}\) be the n-th upper weak record value. In this paper we show that for any fixed m ≥ 2, X 1 has Geometric distribution if and only if \({X_{U_{w}(m)}\mathop=\limits^d X_1+\cdots+X_m ,}\) where \({\underline{\underline{d}}}\) denotes equality in distribution. Our result is a generalization of the case m = 2 obtained by Ahsanullah (J Stat Theory Appl 8(1):5–16, 2009).  相似文献   

14.
Let \(\mathbb{N } = \{1, 2, 3, \ldots \}\) . Let \(\{X, X_{n}; n \in \mathbb N \}\) be a sequence of i.i.d. random variables, and let \(S_{n} = \sum _{i=1}^{n}X_{i}, n \in \mathbb N \) . Then \( S_{n}/\sqrt{n} \Rightarrow N(0, \sigma ^{2})\) for some \(\sigma ^{2} < \infty \) whenever, for a subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}} \Rightarrow N(0, \sigma ^{2})\) . Motivated by this result, we study the central limit theorem along subsequences of sums of i.i.d. random variables when \(\{\sqrt{n}; n \in \mathbb N \}\) is replaced by \(\{\sqrt{na_{n}};n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) . We show that, for given positive nondecreasing sequence \(\{a_{n}; n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) and \(\lim _{n \rightarrow \infty } a_{n+1}/a_{n} = 1\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}a_{n_{k}}} \Rightarrow N(0, 1)\) . In particular, for given \(0 < p < 2\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/n_{k}^{1/p} \Rightarrow N(0, 1)\) .  相似文献   

15.
Using a wavelet basis, we establish in this paper upper bounds of wavelet estimation on \( L^{p}({\mathbb {R}}^{d}) \) risk of regression functions with strong mixing data for \( 1\le p<\infty \). In contrast to the independent case, these upper bounds have different analytic formulae for \(p\in [1, 2]\) and \(p\in (2, +\infty )\). For \(p=2\), it turns out that our result reduces to a theorem of Chaubey et al. (J Nonparametr Stat 25:53–71, 2013); and for \(d=1\) and \(p=2\), it becomes the corresponding theorem of Chaubey and Shirazi (Commun Stat Theory Methods 44:885–899, 2015).  相似文献   

16.
The aim of this letter to acknowledge of priority on calibration estimation. There are numerous studies on calibration estimation in literature. The studies on calibration estimation are reviewed and it is found out that an existing calibration estimator is reprocessed in the recent paper published by Nidhi et al. (2007 Nidhi, B. V. S. Sisodia, Subedar Singh, and Sanjay K. Singh. 2017. Calibration approach estimation of the mean in stratified sampling and stratified double sampling. Commun.Statist.Theor.Meth. 46 (10):49324942.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]).  相似文献   

17.
18.
A vector error correction model is proposed for forecasting realized volatility which takes advantage of the cointegration relation between realized volatility and implied volatility. The model is constructed by adding a cointegration error term to a vector-and-unit-root version of the heterogeneous autoregressive (HAR) model of Corsi (2009 Corsi, F. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7 (2):17496. [Google Scholar]). The proposed model is easier to implement, extend, and interpret than fractional cointegration models. A Monte Carlo simulation and real data analysis reveal advantages of the proposed model over other existing models of Corsi (2009 Corsi, F. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7 (2):17496. [Google Scholar]), Busch Christensen and Nielsen (2011 Busch, T., B. J. Christensen, and M. Nielsen. 2011. The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. Journal of Econometrics 160 (1):4857. [Google Scholar]), Cho and Shin (2016 Cho, S. J. and D. W. Shin. 2016. An integrated heteroscedastic autoregressive model for forecasting long-memory volatilities. Journal of the Korean Statistical Society, 45:371380. [Google Scholar]), and Bollerslev Patton, and Quaedvlieg (2016 Bollerslev, T., A. J. Patton, and R. Quaedvlieg. 2016. Exploiting the errors:A simple approach for improved volatility forecasting. Journal of Econometrics 192:1-18. [Google Scholar]).  相似文献   

19.
We propose a class of methods for graphon estimation based on exploiting connections with nonparametric regression. The idea is to construct an ordering of the nodes in the network, similar in spirit to Chan & Airoldi (2014). However, rather than considering orderings based only on the empirical degree as in Chan & Airoldi (2014), we use the nearest-neighbour algorithm which is an approximative solution to the travelling salesman problem. This algorithm in turn can handle general distances d^ between the nodes, allowing us to incorporate rich information from the network. Once an ordering is constructed, we formulate a two-dimensional-grid graph-denoising problem that we solve through fused-lasso regularization. For particular choices of the metric d^, we show that the corresponding two-step estimator can attain competitive rates when the true model is the stochastic block model, and when the underlying graphon is piecewise Hölder or has bounded variation.  相似文献   

20.
This paper develops a new test for the parametric volatility function of a diffusion model based on nonparametric estimation techniques. The proposed test imposes no restriction on the functional form of the drift function and has an asymptotically standard normal distribution under the null hypothesis of correct specification. It is consistent against any fixed alternatives and has nontrivial asymptotic power against a class of local alternatives with proper rates. Monte Carlo simulations show that the test performs well in finite samples and generally has better power performance than the nonparametric test of Li (2007 Li, F. (2007). Testing the parametric specification of the diffusion function in a diffusion process. Econometric Theory 23(2):221250.[Crossref], [Web of Science ®] [Google Scholar]) and the stochastic process-based tests of Dette and Podolskij (2008 Dette, H., Podolskij, M. (2008). Testing the parametric form of the volatility in continuous time diffusion models–a stochastic process approach. Journal of Econometrics 143(1):5673.[Crossref], [Web of Science ®] [Google Scholar]). When applying the test to high frequency data of EUR/USD exchange rate, the empirical results show that the commonly used volatility functions fit more poorly when the data frequency becomes higher, and the general volatility functions fit relatively better than the constant volatility function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号