首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Risk assessments for carcinogens are being developed through an accelerated process in California as a part of the state's implementation of Proposition 65, the Safe Drinking Water and Toxic Enforcement Act. Estimates of carcinogenic potency made by the California Department of Health Services (CDHS) are generally similar to estimates made by the U.S. Environmental Protection Agency (EPA). The largest differences are due to EPA's use of the maximum likelihood estimate instead of CDHS' use of the upper 95% confidence bounds on potencies derived from human data and to procedures used to correct for studies of short duration or with early mortality. Numerical limits derived from these potency estimates constitute "no significant risk" levels, which govern exemption from Proposition 65's discharge prohibition and warning requirements. Under Proposition 65 regulations, lifetime cancer risks less than 10(-5) are not significant and cumulative intake is not considered. Following these regulations, numerical limits for a number of Proposition 65 carcinogens that are applicable to the control of toxic discharges are less stringent than limits under existing federal water pollution control laws. Thus, existing federal limits will become the Proposition 65 levels for discharge. Chemicals currently not covered by federal and state controls will eventually be subject to discharge limitations under Proposition 65. "No significant risk" levels (expressed in terms of daily intake of carcinogens) also trigger warning requirements under Proposition 65 that are more extensive than existing state or federal requirements. A variety of chemical exposures from multiple sources are identified that exceed Proposition 65's "no significant risk" levels.  相似文献   

2.
Population growth in California has increased the pressure to convert agricultural land to commercial, industrial, or residential uses. In the ensuing property transactions, buyers and sellers must address the presence of toxic materials in soils such as pesticides, several of which are known to the State of California to cause cancer under Proposition 65. While this statute does not specifically address soil contaminants, the potential scope of its enforcement is sufficiently broad that owners of former agricultural properties may be obliged to provide warning of exposure to potential buyers, occupants, or construction workers about exposure to residues in soil from pesticide applications. However, Proposition 65 provides no guidance on how to assess exposures to chemicals in soil. The U.S. EPA Risk Assessment Guidance for Superfund (RAGS) provides a method for assessing soil-related exposure pathways that is consistent with the intent of Proposition 65. Using this approach, we have calculated the lifetime average concentrations of DDT in soil corresponding to the no-significant-risk level stipulated under Proposition 65 (1 × 10−5) for a hypothetical residential exposure scenario. The concentration of DDT in soil corresponding to a no-significant-risk ranges from 7.9-18.8 mg/kg, depending upon which exposure pathways are deemed to be complete for residential land use. It is argued that Proposition 65 forces the assessment and possible cleanup of such a situation through the threat of creating a health risk perception that could affect the market value of a property.  相似文献   

3.
The Social Benefits of Expedited Risk Assessments   总被引:1,自引:0,他引:1  
The present regulation of carcinogens is quite slow; hundreds of substances that have tested positive for carcinogenicity in animal bioassays have not been addressed by the U.S. regulatory system. This carries with it unappreciated social, economic, and public health costs. However, there are readily available expedited approximation procedures for assessing the potency of carcinogens whose use has substantial benefits that outweigh any costs from less science-intensive and less extensively documented assessments. These benefits can be seen by using a model to suggest the magnitude of social costs in regulating carcinogens by current conventional methods compared with expedited procedures for assessing the potency of known carcinogens. Two scenarios, one in accordance with current agency presumptions and one which assumes extreme unreliability in animal data and in the accuracy of potency assessments, compare conventional science-intensive and expedited procedures. On both, the total social costs of expedited procedures are lower than conventional procedures across a wide range of values assigned for individual mistakes of under regulation and over regulation. It appears better to evaluate a larger universe of known carcinogens somewhat less intensively for each substance than to evaluate a small proportion of that same universe very carefully and delay considering the rest.  相似文献   

4.
Approaches to risk assessment have been shown to vary among regulatory agencies and across jurisdictional boundaries according to the different assumptions and justifications used. Approaches to screening-level risk assessment from six international agencies were applied to an urban case study focusing on benzo[a]pyrene (B[a]P) exposure and compared in order to provide insight into the differences between agency methods, assumptions, and justifications. Exposure estimates ranged four-fold, with most of the dose stemming from exposure to animal products (8-73%) and plant products (24-88%). Total cancer risk across agencies varied by two orders of magnitude, with exposure to air and plant and animal products contributing most to total cancer risk, while the air contribution showed the greatest variability (1-99%). Variability in cancer risk of 100-fold was attributed to choices of toxicological reference values (TRVs), either based on a combination of epidemiological and animal data, or on animal data. The contribution and importance of the urban exposure pathway for cancer risk varied according to the TRV and, ultimately, according to differences in risk assessment assumptions and guidance. While all agency risk assessment methods are predicated on science, the study results suggest that the largest impact on the differential assessment of risk by international agencies comes from policy and judgment, rather than science.  相似文献   

5.
《Risk analysis》2018,38(6):1128-1142
Lumber Liquidators (LL) Chinese‐manufactured laminate flooring (CLF) has been installed in >400,000 U.S. homes over the last decade. To characterize potential associated formaldehyde exposures and cancer risks, chamber emissions data were collected from 399 new LL CLF, and from LL CLF installed in 899 homes in which measured aggregate indoor formaldehyde concentrations exceeded 100 μg/m3 from a total of 17,867 homes screened. Data from both sources were combined to characterize LL CLF flooring‐associated formaldehyde emissions from new boards and installed boards. New flooring had an average (±SD ) emission rate of 61.3 ± 52.1 μg/m2‐hour; >one‐year installed boards had ∼threefold lower emission rates. Estimated emission rates for the 899 homes and corresponding data from questionnaires were used as inputs to a single‐compartment, steady‐state mass‐balance model to estimate corresponding residence‐specific TWA formaldehyde concentrations and potential resident exposures. Only ∼0.7% of those homes had estimated acute formaldehyde concentrations >100 μg/m3 immediately after LL CLF installation. The TWA daily formaldehyde inhalation exposure within the 899 homes was estimated to be 17 μg/day using California Proposition 65 default methods to extrapolate cancer risk (below the regulation “no significant risk level” of 40 μg/day). Using a U.S. Environmental Protection Agency linear cancer risk model, 50th and 95th percentile values of expected lifetime cancer risk for residents of these homes were estimated to be 0.33 and 1.2 per 100,000 exposed, respectively. Based on more recent data and verified nonlinear cancer risk assessment models, LL CLF formaldehyde emissions pose virtually no cancer risk to affected consumers.  相似文献   

6.
This study evaluates the dose-response relationship for inhalation exposure to hexavalent chromium [Cr(VI)] and lung cancer mortality for workers of a chromate production facility, and provides estimates of the carcinogenic potency. The data were analyzed using relative risk and additive risk dose-response models implemented with both Poisson and Cox regression. Potential confounding by birth cohort and smoking prevalence were also assessed. Lifetime cumulative exposure and highest monthly exposure were the dose metrics evaluated. The estimated lifetime additional risk of lung cancer mortality associated with 45 years of occupational exposure to 1 microg/m3 Cr(VI) (occupational exposure unit risk) was 0.00205 (90%CI: 0.00134, 0.00291) for the relative risk model and 0.00216 (90%CI: 0.00143, 0.00302) for the additive risk model assuming a linear dose response for cumulative exposure with a five-year lag. Extrapolating these findings to a continuous (e.g., environmental) exposure scenario yielded an environmental unit risk of 0.00978 (90%CI: 0.00640, 0.0138) for the relative risk model [e.g., a cancer slope factor of 34 (mg/kg-day)-1] and 0.0125 (90%CI: 0.00833, 0.0175) for the additive risk model. The relative risk model is preferred because it is more consistent with the expected trend for lung cancer risk with age. Based on statistical tests for exposure-related trend, there was no statistically significant increased lung cancer risk below lifetime cumulative occupational exposures of 1.0 mg-yr/m3, and no excess risk for workers whose highest average monthly exposure did not exceed the current Permissible Exposure Limit (52 microg/m3). It is acknowledged that this study had limited power to detect increases at these low exposure levels. These cancer potency estimates are comparable to those developed by U.S. regulatory agencies and should be useful for assessing the potential cancer hazard associated with inhaled Cr(VI).  相似文献   

7.
State environmental agencies in the United States are charged with making risk management decisions that protect public health and the environment while managing limited technical, financial, and human resources. Meanwhile, the federal risk assessment community that provides risk assessment guidance to state agencies is challenged by the rapid growth of the global chemical inventory. When chemical toxicity profiles are unavailable on the U.S. Environmental Protection Agency's Integrated Risk Information System or other federal resources, each state agency must act independently to identify and select appropriate chemical risk values for application in human health risk assessment. This practice can lead to broad interstate variation in the toxicity values selected for any one chemical. Within this context, this article describes the decision‐making process and resources used by the federal government and individual U.S. states. The risk management of trichloroethylene (TCE) in the United States is presented as a case study to demonstrate the need for a collaborative approach among U.S. states toward identification and selection of chemical risk values while awaiting federal risk values to be set. The regulatory experience with TCE is contrasted with collaborative risk science models, such as the European Union's efforts in risk assessment harmonization. Finally, we introduce State Environmental Agency Risk Collaboration for Harmonization, a free online interactive tool designed to help to create a collaborative network among state agencies to provide a vehicle for efficiently sharing information and resources, and for the advancement of harmonization in risk values used among U.S. states when federal guidance is unavailable.  相似文献   

8.
Two-year chronic bioassays were conducted by using B6C3F1 female mice fed several concentrations of two different mixtures of coal tars from manufactured gas waste sites or benzo(a)pyrene (BaP). The purpose of the study was to obtain estimates of cancer potency of coal tar mixtures, by using conventional regulatory methods, for use in manufactured gas waste site remediation. A secondary purpose was to investigate the validity of using the concentration of a single potent carcinogen, in this case benzo(a)pyrene, to estimate the relative risk for a coal tar mixture. The study has shown that BaP dominates the cancer risk when its concentration is greater than 6,300 ppm in the coal tar mixture. In this case the most sensitive tissue site is the forestomach. Using low-dose linear extrapolation, the lifetime cancer risk for humans is estimated to be: Risk < 1.03 x 10(-4) (ppm coal tar in total diet) + 240 x 10(-4) (ppm BaP in total diet), based on forestomach tumors. If the BaP concentration in the coal tar mixture is less than 6,300 ppm, the more likely case, then lung tumors provide the largest estimated upper limit of risk, Risk < 2.55 x 10(-4) (ppm coal tar in total diet), with no contribution of BaP to lung tumors. The upper limit of the cancer potency (slope factor) for lifetime oral exposure to benzo(a)pyrene is 1.2 x 10(-3) per microgram per kg body weight per day from this Good Laboratory Practice (GLP) study compared with the current value of 7.3 x 10(-3) per microgram per kg body weight per day listed in the U.S. EPA Integrated Risk Information System.  相似文献   

9.
A call for risk assessment approaches that better characterize and quantify uncertainty has been made by the scientific and regulatory community. This paper responds to that call by demonstrating a distributional approach that draws upon human data to derive potency estimates and to identify and quantify important sources of uncertainty. The approach is rooted in the science of decision analysis and employs an influence diagram, a decision tree, probabilistic weights, and a distribution of point estimates of carcinogenic potency. Its results estimate the likelihood of different carcinogenic risks (potencies) for a chemical under a specific scenario. For this exercise, human data on formaldehyde were employed to demonstrate the approach. Sensitivity analyses were performed to determine the relative impact of specific levels and alternatives on the potency distribution. The resulting potency estimates are compared with the results of an exercise using animal data on formaldehyde. The paper demonstrates that distributional risk assessment is readily adapted to situations in which epidemiologic data serve as the basis for potency estimates. Strengths and weaknesses of the distributional approach are discussed. Areas for further application and research are recommended.  相似文献   

10.
Two-year chronic bioassays were conducted by using B6C3F1 female mice fed several concentrations of two different mixtures of coal tars from manufactured gas waste sites or benzo(a)pyrene (BaP). The purpose of the study was to obtain estimates of cancer potency of coal tar mixtures, by using conventional regulatory methods, for use in manufactured gas waste site remediation. A secondary purpose was to investigate the validity of using the concentration of a single potent carcinogen, in this case benzo(a)pyrene, to estimate the relative risk for a coal tar mixture. The study has shown that BaP dominates the cancer risk when its concentration is greater than 6,300 ppm in the coal tar mixture. In this case the most sensitive tissue site is the forestomach. Using low-dose linear extrapolation, the lifetime cancer risk for humans is estimated to be: Risk < 1.03 × 10−4 (ppm coal tar in total diet) + 240 × 10−4 (ppm BaP in total diet), based on forestomach tumors. If the BaP concentration in the coal tar mixture is less than 6,300 ppm, the more likely case, then lung tumors provide the largest estimated upper limit of risk, Risk < 2.55 × 10−4 (ppm coal tar in total diet), with no contribution of BaP to lung tumors. The upper limit of the cancer potency (slope factor) for lifetime oral exposure to benzo(a)pyrene is 1.2 × 10−3 per μg per kg body weight per day from this Good Laboratory Practice (GLP) study compared with the current value of 7.3 × 10−3 per μg per kg body weight per day listed in the U.S. EPA Integrated Risk Information System.  相似文献   

11.
In the evaluation of chemical compounds for carcinogenic risk, regulatory agencies such as the U.S. Environmental Protection Agency and National Toxicology Program (NTP) have traditionally fit a dose-response model to data from rodent bioassays, and then used the fitted model to estimate a Virtually Safe Dose or the dose corresponding to a very small increase (usually 10(-6)) in risk over background. Much recent interest has been directed at incorporating additional scientific information regarding the properties of the specific chemical under investigation into the risk assessment process, including biological mechanisms of cancer induction, metabolic pathways, and chemical structure and activity. Despite the fact that regulatory agencies are currently poised to allow use of nonlinear dose-response models based on the concept of an underlying threshold for nongenotoxic chemicals, there have been few attempts to investigate the overall relationship between the shape of dose-response curves and mutagenicity. Using data from an historical database of NTP cancer bioassays, the authors conducted a repeated-measures Analysis of the estimated shape from fitting extended Weibull dose-response curves. It was concluded that genotoxic chemicals have dose-response curves that are closer to linear than those for nongenotoxic chemicals, though on average, both types of compounds have dose-response curves that are convex and the effect of genotoxicity is small.  相似文献   

12.
To aid in their safety oversight of large‐scale, potentially dangerous energy and water infrastructure and transportation systems, public utility regulatory agencies increasingly seek to use formal risk assessment models. Yet some of the approaches to risk assessment used by utilities and their regulators may be less useful for this purpose than is supposed. These approaches often do not reflect the current state of the art in risk assessment strategy and methodology. This essay explores why utilities and regulatory agencies might embrace risk assessment techniques that do not sufficiently assess organizational and managerial factors as drivers of risk, nor that adequately represent important uncertainties surrounding risk calculations. Further, it describes why, in the special legal, political, and administrative world of the typical public utility regulator, strategies to identify and mitigate formally specified risks might actually diverge from the regulatory promotion of “safety.” Some improvements are suggested that can be made in risk assessment approaches to support more fully the safety oversight objectives of public regulatory agencies, with examples from “high‐reliability organizations” (HROs) that have successfully merged the management of safety with the management of risk. Finally, given the limitations of their current risk assessments and the lessons from HROs, four specific assurances are suggested that regulatory agencies should seek for themselves and the public as objectives in their safety oversight of public utilities.  相似文献   

13.
Historically, U.S. regulators have derived cancer slope factors by using applied dose and tumor response data from a single key bioassay or by averaging the cancer slope factors of several key bioassays. Recent changes in U.S. Environmental Protection Agency (EPA) guidelines for cancer risk assessment have acknowledged the value of better use of mechanistic data and better dose–response characterization. However, agency guidelines may benefit from additional considerations presented in this paper. An exploratory study was conducted by using rat brain tumor data for acrylonitrile (AN) to investigate the use of physiologically based pharmacokinetic (PBPK) modeling along with pooling of dose–response data across routes of exposure as a means for improving carcinogen risk assessment methods. In this study, two contrasting assessments were conducted for AN-induced brain tumors in the rat on the basis of (1) the EPA's approach, the dose–response relationship was characterized by using administered dose/concentration for each of the key studies assessed individually; and (2) an analysis of the pooled data, the dose–response relationship was characterized by using PBPK-derived internal dose measures for a combined database of ten bioassays. The cancer potencies predicted for AN by the contrasting assessments are remarkably different (i.e., risk-specific doses differ by as much as two to four orders of magnitude), with the pooled data assessments yielding lower values. This result suggests that current carcinogen risk assessment practices overestimate AN cancer potency. This methodology should be equally applicable to other data-rich chemicals in identifying (1) a useful dose measure, (2) an appropriate dose–response model, (3) an acceptable point of departure, and (4) an appropriate method of extrapolation from the range of observation to the range of prediction when a chemical's mode of action remains uncertain.  相似文献   

14.
A mechanistic model and associated procedures are proposed for cancer risk assessment of genotoxic chemicals. As previously shown for ionizing radiation, a linear multiplicative model was found to be compatible with published experimental data for ethylene oxide, acrylamide, and butadiene. The validity of this model was anticipated in view of the multiplicative interaction of mutation with inherited and acquired growth-promoting conditions. Concurrent analysis led to rejection of an additive model (i.e. the model commonly applied for cancer risk assessment). A reanalysis of data for radiogenic cancer in mouse, dog and man shows that the relative risk coefficient is approximately the same (0.4 to 0.5 percent per rad) for tumours induced in the three species.Doses in vivo, defined as the time-integrated concentrations of ultimate mutagens, expressed in millimol × kg–1 × h (mMh) are, like radiation doses given in Gy or rad, proportional to frequencies of potentially mutagenic events. The radiation dose equivalents of chemical doses are, calculated by multiplying chemical doses (in mMh) with the relative genotoxic potencies (in rad × mMh–1) determined in vitro. In this way the relative cancer incidence increments in rats and mice exposed to ethylene oxide were shown to be about 0.4 percent per rad-equivalent, in agreement with the data for radiogenic cancer.Our analyses suggest that values of the relative risk coefficients for genotoxic chemicals are independent of species and that relative cancer risks determined in animal tests apply also to humans. If reliable animal test data are not available, cancer risks may be estimated by the relative potency. In both cases exposure dose/target dose relationships, the latter via macromolecule adducts, should be determined.  相似文献   

15.
Historically, U.S. regulators have derived cancer slope factors by using applied dose and tumor response data from a single key bioassay or by averaging the cancer slope factors of several key bioassays. Recent changes in U.S. Environmental Protection Agency (EPA) guidelines for cancer risk assessment have acknowledged the value of better use of mechanistic data and better dose-response characterization. However, agency guidelines may benefit from additional considerations presented in this paper. An exploratory study was conducted by using rat brain tumor data for acrylonitrile (AN) to investigate the use of physiologically based pharmacokinetic (PBPK) modeling along with pooling of dose-response data across routes of exposure as a means for improving carcinogen risk assessment methods. In this study, two contrasting assessments were conducted for AN-induced brain tumors in the rat on the basis of (1) the EPA's approach, the dose-response relationship was characterized by using administered dose/concentration for each of the key studies assessed individually; and (2) an analysis of the pooled data, the dose-response relationship was characterized by using PBPK-derived internal dose measures for a combined database of ten bioassays. The cancer potencies predicted for AN by the contrasting assessments are remarkably different (i.e., risk-specific doses differ by as much as two to four orders of magnitude), with the pooled data assessments yielding lower values. This result suggests that current carcinogen risk assessment practices overestimate AN cancer potency. This methodology should be equally applicable to other data-rich chemicals in identifying (1) a useful dose measure, (2) an appropriate dose-response model, (3) an acceptable point of departure, and (4) an appropriate method of extrapolation from the range of observation to the range of prediction when a chemical's mode of action remains uncertain.  相似文献   

16.
Connecticut's Dioxin Ambient Air Quality Standard   总被引:1,自引:0,他引:1  
Connecticut is the first state in the country to have adopted an ambient air quality standard for dioxins at 1 pg/m3, 2,3,7,8-TCDD equivalents, as annual average. This paper describes the scientific basis and the methodology used by the State Department of Health Services (the risk assessment agency) in assisting the Department of Enviromental Protection (the risk management agency) to establish a health-based dioxin standard. This standard protects the public health from the aggregate effect of all sources of dioxin emissions in the vapor and particulate phases. The risk assessment methodology included: a limit on total daily dioxin exposure from all media and sources based on reproductive effects; a multimedia nonsource-specific exposure assessment; an apportionment by media of the health-based limit (including background dosing rate); an evaluation of inhalation bioavailability and cancer risk based on a calculation of a range of upperbound cancer risk estimates using different potency, bioavailability, and particle phase assumptions.  相似文献   

17.
For the vast majority of chemicals that have cancer potency estimates on IRIS, the underlying database is deficient with respect to early-life exposures. This data gap has prevented derivation of cancer potency factors that are relevant to this time period, and so assessments may not fully address children's risks. This article provides a review of juvenile animal bioassay data in comparison to adult animal data for a broad array of carcinogens. This comparison indicates that short-term exposures in early life are likely to yield a greater tumor response than short-term exposures in adults, but similar tumor response when compared to long-term exposures in adults. This evidence is brought into a risk assessment context by proposing an approach that: (1) does not prorate children's exposures over the entire life span or mix them with exposures that occur at other ages; (2) applies the cancer slope factor from adult animal or human epidemiology studies to the children's exposure dose to calculate the cancer risk associated with the early-life period; and (3) adds the cancer risk for young children to that for older children/adults to yield a total lifetime cancer risk. The proposed approach allows for the unique exposure and pharmacokinetic factors associated with young children to be fully weighted in the cancer risk assessment. It is very similar to the approach currently used by U.S. EPA for vinyl chloride. The current analysis finds that the database of early life and adult cancer bioassays supports extension of this approach from vinyl chloride to other carcinogens of diverse mode of action. This approach should be enhanced by early-life data specific to the particular carcinogen under analysis whenever possible.  相似文献   

18.
Quantitative Approaches in Use to Assess Cancer Risk   总被引:4,自引:0,他引:4  
  相似文献   

19.
Lifetime cancer potency of alfatoxin was assessed based on the Yeh et al. study from China in which both aflatoxin exposure and hepatitis B prevalence were measured. This study provides the best available information for estimating the carcinogenic risk posed by aflatoxin to the U.S. population. Cancer potency of aflatoxin was estimated using a biologically motivated risk assessment model. The best estimate of aflatoxin potency was 9 (mg/kg/day)−1 for individuals negative for hepatitis B and 230 (mg/kg/day)−1 for individuals positive for hepatitis B.  相似文献   

20.
Upperbound lifetime excess cancer risks were calculated for activities associated with asbestos abatement using a risk assessment framework developed for EPA's Superfund program. It was found that removals were associated with cancer risks to workers which were often greater than the commonly accepted cancer risk of 1 x 10(-6), although lower than occupational exposure limits associated with risks of 1 x 10(-3). Removals had little effect in reducing risk to school populations. Risks to teachers and students in school buildings containing asbestos were approximately the same as risks associated with exposure to ambient asbestos by the general public and were below the levels typically of concern to regulatory agencies. During abatement, however, there were increased risks to both workers and nearby individuals. Careless, everyday building maintenance generated the greatest risk to workers followed by removals and encapsulation. If asbestos abatement was judged by the risk criteria applied to EPA's Superfund program, the no-action alternative would likely be selected in preference to removal in a majority of cases. These conclusions should only be interpreted within the context of an overall asbestos risk management program, which includes consideration of specific fiber types and sizes, sampling and analytical limitations, physical condition of asbestos-containing material, episodic peak exposures, and the number of people potentially exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号