首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In many medical studies, patients are followed longitudinally and interest is on assessing the relationship between longitudinal measurements and time to an event. Recently, various authors have proposed joint modeling approaches for longitudinal and time-to-event data for a single longitudinal variable. These joint modeling approaches become intractable with even a few longitudinal variables. In this paper we propose a regression calibration approach for jointly modeling multiple longitudinal measurements and discrete time-to-event data. Ideally, a two-stage modeling approach could be applied in which the multiple longitudinal measurements are modeled in the first stage and the longitudinal model is related to the time-to-event data in the second stage. Biased parameter estimation due to informative dropout makes this direct two-stage modeling approach problematic. We propose a regression calibration approach which appropriately accounts for informative dropout. We approximate the conditional distribution of the multiple longitudinal measurements given the event time by modeling all pairwise combinations of the longitudinal measurements using a bivariate linear mixed model which conditions on the event time. Complete data are then simulated based on estimates from these pairwise conditional models, and regression calibration is used to estimate the relationship between longitudinal data and time-to-event data using the complete data. We show that this approach performs well in estimating the relationship between multivariate longitudinal measurements and the time-to-event data and in estimating the parameters of the multiple longitudinal process subject to informative dropout. We illustrate this methodology with simulations and with an analysis of primary biliary cirrhosis (PBC) data.  相似文献   

2.
The joint models for longitudinal data and time-to-event data have recently received numerous attention in clinical and epidemiologic studies. Our interest is in modeling the relationship between event time outcomes and internal time-dependent covariates. In practice, the longitudinal responses often show non linear and fluctuated curves. Therefore, the main aim of this paper is to use penalized splines with a truncated polynomial basis to parameterize the non linear longitudinal process. Then, the linear mixed-effects model is applied to subject-specific curves and to control the smoothing. The association between the dropout process and longitudinal outcomes is modeled through a proportional hazard model. Two types of baseline risk functions are considered, namely a Gompertz distribution and a piecewise constant model. The resulting models are referred to as penalized spline joint models; an extension of the standard joint models. The expectation conditional maximization (ECM) algorithm is applied to estimate the parameters in the proposed models. To validate the proposed algorithm, extensive simulation studies were implemented followed by a case study. In summary, the penalized spline joint models provide a new approach for joint models that have improved the existing standard joint models.  相似文献   

3.
In HIV/AIDS study, the measurements viral load are often highly skewed and left-censored because of a lower detection limit. Furthermore, a terminal event (e.g., death) stops the follow-up process. The time to terminal event may be dependent on the viral load measurements. In this article, we present a joint analysis framework to model the censored longitudinal data with skewness and a terminal event process. The estimation is carried out by adaptive Gaussian quadrature techniques in SAS procedure NLMIXED. The proposed model is evaluated by a simulation study and is applied to the motivating Multicenter AIDS Cohort Study (MACS).  相似文献   

4.
In this article we introduce a general approach to dynamic path analysis. This is an extension of classical path analysis to the situation where variables may be time-dependent and where the outcome of main interest is a stochastic process. In particular we will focus on the survival and event history analysis setting where the main outcome is a counting process. Our approach will be especially fruitful for analyzing event history data with internal time-dependent covariates, where an ordinary regression analysis may fail. The approach enables us to describe how the effect of a fixed covariate partly is working directly and partly indirectly through internal time-dependent covariates. For the sequence of times of event, we define a sequence of path analysis models. At each time of an event, ordinary linear regression is used to estimate the relation between the covariates, while the additive hazard model is used for the regression of the counting process on the covariates. The methodology is illustrated using data from a randomized trial on survival for patients with liver cirrhosis.  相似文献   

5.
Informative dropout is a vexing problem for any biomedical study. Most existing statistical methods attempt to correct estimation bias related to this phenomenon by specifying unverifiable assumptions about the dropout mechanism. We consider a cohort study in Africa that uses an outreach programme to ascertain the vital status for dropout subjects. These data can be used to identify a number of relevant distributions. However, as only a subset of dropout subjects were followed, vital status ascertainment was incomplete. We use semi‐competing risk methods as our analysis framework to address this specific case where the terminal event is incompletely ascertained and consider various procedures for estimating the marginal distribution of dropout and the marginal and conditional distributions of survival. We also consider model selection and estimation efficiency in our setting. Performance of the proposed methods is demonstrated via simulations, asymptotic study and analysis of the study data.  相似文献   

6.
In many longitudinal studies multiple characteristics of each individual, along with time to occurrence of an event of interest, are often collected. In such data set, some of the correlated characteristics may be discrete and some of them may be continuous. In this paper, a joint model for analysing multivariate longitudinal data comprising mixed continuous and ordinal responses and a time to event variable is proposed. We model the association structure between longitudinal mixed data and time to event data using a multivariate zero-mean Gaussian process. For modeling discrete ordinal data we assume a continuous latent variable follows the logistic distribution and for continuous data a Gaussian mixed effects model is used. For the event time variable, an accelerated failure time model is considered under different distributional assumptions. For parameter estimation, a Bayesian approach using Markov Chain Monte Carlo is adopted. The performance of the proposed methods is illustrated using some simulation studies. A real data set is also analyzed, where different model structures are used. Model comparison is performed using a variety of statistical criteria.  相似文献   

7.
Consider the Lehmann model with time-dependent covariates, which is different from Cox’s model. We find out that (1) the parameter space for β under the Lehmann model is restricted, and the maximum point of the parametric likelihood for β may lie outside the parameter space; (2) for some particular time-dependent covariate, under the standard generalized likelihood the semiparametric maximum likelihood estimator (SMLE) is inconsistent and we propose a modified generalized likelihood which leads to the consistent SMLE.  相似文献   

8.
In survival analysis, time-dependent covariates are usually present as longitudinal data collected periodically and measured with error. The longitudinal data can be assumed to follow a linear mixed effect model and Cox regression models may be used for modelling of survival events. The hazard rate of survival times depends on the underlying time-dependent covariate measured with error, which may be described by random effects. Most existing methods proposed for such models assume a parametric distribution assumption on the random effects and specify a normally distributed error term for the linear mixed effect model. These assumptions may not be always valid in practice. In this article, we propose a new likelihood method for Cox regression models with error-contaminated time-dependent covariates. The proposed method does not require any parametric distribution assumption on random effects and random errors. Asymptotic properties for parameter estimators are provided. Simulation results show that under certain situations the proposed methods are more efficient than the existing methods.  相似文献   

9.
The multiple longitudinal outcomes collected in many clinical trials are often analyzed by multilevel item response theory (MLIRT) models. The normality assumption for the continuous outcomes in the MLIRT models can be violated due to skewness and/or outliers. Moreover, patients’ follow-up may be stopped by some terminal events (e.g., death or dropout), which are dependent on the multiple longitudinal outcomes. We proposed a joint modeling framework based on the MLIRT model to account for three data features: skewness, outliers, and dependent censoring. Our method development was motivated by a clinical study for Parkinson’s disease.  相似文献   

10.
ABSTRACT

Longitudinal data often arise in longitudinal follow-up studies, and there may exist a dependent terminal event such as death that stops the follow-up. In this article, we propose a new joint modeling for the analysis of longitudinal data with informative observation times via a dependent terminal event and two latent variables. Estimating equations are developed for parameter estimation, and asymptotic properties of the resulting estimators are established. In addition, a generalization of the joint model with time-varying coefficients for the longitudinal response variable is considered, and goodness-of-fit methods for assessing the adequacy of the model are also provided. The proposed method works well in our simulation studies, and is applied to a data set from a bladder cancer study.  相似文献   

11.
ABSTRACT

In many longitudinal studies, there may exist informative observation times and a dependent terminal event that stops the follow-up. In this paper, we propose a joint model for analysis of longitudinal data with informative observation times and a dependent terminal event via two latent variables. Estimation procedures are developed for parameter estimation, and asymptotic properties of the proposed estimators are derived. Simulation studies demonstrate that the proposed method performs well for practical settings. An application to a bladder cancer study is illustrated.  相似文献   

12.
This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance–covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.  相似文献   

13.
In longitudinal observational studies, repeated measures are often correlated with observation times as well as censoring time. This article proposes joint modeling and analysis of longitudinal data with time-dependent covariates in the presence of informative observation and censoring times via a latent variable. Estimating equation approaches are developed for parameter estimation and asymptotic properties of the proposed estimators are established. In addition, a generalization of the semiparametric model with time-varying coefficients for the longitudinal response is considered. Furthermore, a lack-of-fit test is provided for assessing the adequacy of the model, and some tests are presented for investigating whether or not covariate effects vary with time. The finite-sample behavior of the proposed methods is examined in simulation studies, and an application to a bladder cancer study is illustrated.  相似文献   

14.
Hu  Tianle  Nan  Bin  Lin  Xihong 《Lifetime data analysis》2019,25(3):480-506

Cross-ratio is an important local measure of the strength of dependence among correlated failure times. If a covariate is available, it may be of scientific interest to understand how the cross-ratio varies with the covariate as well as time components. Motivated by the Tremin study, where the dependence between age at a marker event reflecting early lengthening of menstrual cycles and age at menopause may be affected by age at menarche, we propose a proportional cross-ratio model through a baseline cross-ratio function and a multiplicative covariate effect. Assuming a parametric model for the baseline cross-ratio, we generalize the pseudo-partial likelihood approach of Hu et al. (Biometrika 98:341–354, 2011) to the joint estimation of the baseline cross-ratio and the covariate effect. We show that the proposed parameter estimator is consistent and asymptotically normal. The performance of the proposed technique in finite samples is examined using simulation studies. In addition, the proposed method is applied to the Tremin study for the dependence between age at a marker event and age at menopause adjusting for age at menarche. The method is also applied to the Australian twin data for the estimation of zygosity effect on cross-ratio for age at appendicitis between twin pairs.

  相似文献   

15.
Recurrent events data with a terminal event often arise in many longitudinal studies. Most of existing models assume multiplicative covariate effects and model the conditional recurrent event rate given survival. In this article, we propose a marginal additive rates model for recurrent events with a terminal event, and develop two procedures for estimating the model parameters. The asymptotic properties of the resulting estimators are established. In addition, some numerical procedures are presented for model checking. The finite-sample behavior of the proposed methods is examined through simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

16.
In longitudinal studies, the additive hazard model is often used to analyze covariate effects on the duration time, defined as the elapsed time between the first and the second event. In this article, we consider the situation when the first event suffers partly interval censoring and the second event suffers left truncation and right-censoring. We proposed a two-step estimation procedure for estimating the regression coefficients of the additive hazards model. A simulation study is conducted to investigate the performance of the proposed estimator. The proposed method is applied to the Centers for Disease Control acquired immune deficiency syndrome blood transfusion data.  相似文献   

17.
Recurrent events data are frequently encountered and could be stopped by a terminal event in clinical trials. It is of interest to assess the treatment efficacy simultaneously with respect to both the recurrent events and the terminal event in many applications. In this paper we propose joint covariate-adjusted score test statistics based on joint models of recurrent events and a terminal event. No assumptions on the functional form of the covariates are needed. Simulation results show that the proposed tests can improve the efficiency over tests based on covariate unadjusted model. The proposed tests are applied to the SOLVD data for illustration.  相似文献   

18.
This paper considers estimation and prediction in the Aalen additive hazards model in the case where the covariate vector is high-dimensional such as gene expression measurements. Some form of dimension reduction of the covariate space is needed to obtain useful statistical analyses. We study the partial least squares regression method. It turns out that it is naturally adapted to this setting via the so-called Krylov sequence. The resulting PLS estimator is shown to be consistent provided that the number of terms included is taken to be equal to the number of relevant components in the regression model. A standard PLS algorithm can also be constructed, but it turns out that the resulting predictor can only be related to the original covariates via time-dependent coefficients. The methods are applied to a breast cancer data set with gene expression recordings and to the well known primary biliary cirrhosis clinical data.  相似文献   

19.
During their follow-up, patients with cancer can experience several types of recurrent events and can also die. Over the last decades, several joint models have been proposed to deal with recurrent events with dependent terminal event. Most of them require the proportional hazard assumption. In the case of long follow-up, this assumption could be violated. We propose a joint frailty model for two types of recurrent events and a dependent terminal event to account for potential dependencies between events with potentially time-varying coefficients. For that, regression splines are used to model the time-varying coefficients. Baseline hazard functions (BHF) are estimated with piecewise constant functions or with cubic M-Splines functions. The maximum likelihood estimation method provides parameter estimates. Likelihood ratio tests are performed to test the time dependency and the statistical association of the covariates. This model was driven by breast cancer data where the maximum follow-up was close to 20 years.  相似文献   

20.
The Cox‐Aalen model, obtained by replacing the baseline hazard function in the well‐known Cox model with a covariate‐dependent Aalen model, allows for both fixed and dynamic covariate effects. In this paper, we examine maximum likelihood estimation for a Cox‐Aalen model based on interval‐censored failure times with fixed covariates. The resulting estimator globally converges to the truth slower than the parametric rate, but its finite‐dimensional component is asymptotically efficient. Numerical studies show that estimation via a constrained Newton method performs well in terms of both finite sample properties and processing time for moderate‐to‐large samples with few covariates. We conclude with an application of the proposed methods to assess risk factors for disease progression in psoriatic arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号