首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exposure to chemical contaminants in various media must be estimated when performing ecological risk assessments. Exposure estimates are often based on the 95th-percentile upper confidence limit on the mean concentration of all samples, calculated without regard to critical ecological and spatial information about the relative relationship of receptors, their habitats, and contaminants. This practice produces exposure estimates that are potentially unrepresentative of the ecology of the receptor. This article proposes a habitat area and quality-conditioned exposure estimator, E[HQ], that requires consideration of these relationships. It describes a spatially explicit ecological exposure model to facilitate calculation of E[HQ]. The model provides (1) a flexible platform for investigating the effect of changes in habitat area, habitat quality, foraging area, and population size on exposure estimates, and (2) a tool for calculating E[HQ] for use in actual risk assessments. The inner loop of a Visual Basic program randomly walks a receptor over a multicelled landscape--each cell of which contains values for cell area, habitat area, habitat quality, and concentration--accumulating an exposure estimate until the total area foraged is less than or equal to a given foraging area. An outer loop then steps through foraging areas of increasing size. This program is iterated by Monte Carlo software, with the number of iterations representing the population size. Results indicate that (1) any single estimator may over- or underestimate exposure, depending on foraging strategy and spatial relationships of habitat and contamination, and (2) changes in exposure estimates in response to changes in foraging and habitat area are not linear.  相似文献   

2.
This study evaluates the dose-response relationship for inhalation exposure to hexavalent chromium [Cr(VI)] and lung cancer mortality for workers of a chromate production facility, and provides estimates of the carcinogenic potency. The data were analyzed using relative risk and additive risk dose-response models implemented with both Poisson and Cox regression. Potential confounding by birth cohort and smoking prevalence were also assessed. Lifetime cumulative exposure and highest monthly exposure were the dose metrics evaluated. The estimated lifetime additional risk of lung cancer mortality associated with 45 years of occupational exposure to 1 microg/m3 Cr(VI) (occupational exposure unit risk) was 0.00205 (90%CI: 0.00134, 0.00291) for the relative risk model and 0.00216 (90%CI: 0.00143, 0.00302) for the additive risk model assuming a linear dose response for cumulative exposure with a five-year lag. Extrapolating these findings to a continuous (e.g., environmental) exposure scenario yielded an environmental unit risk of 0.00978 (90%CI: 0.00640, 0.0138) for the relative risk model [e.g., a cancer slope factor of 34 (mg/kg-day)-1] and 0.0125 (90%CI: 0.00833, 0.0175) for the additive risk model. The relative risk model is preferred because it is more consistent with the expected trend for lung cancer risk with age. Based on statistical tests for exposure-related trend, there was no statistically significant increased lung cancer risk below lifetime cumulative occupational exposures of 1.0 mg-yr/m3, and no excess risk for workers whose highest average monthly exposure did not exceed the current Permissible Exposure Limit (52 microg/m3). It is acknowledged that this study had limited power to detect increases at these low exposure levels. These cancer potency estimates are comparable to those developed by U.S. regulatory agencies and should be useful for assessing the potential cancer hazard associated with inhaled Cr(VI).  相似文献   

3.
As industrial development is increasing near northern Canadian communities, human health risk assessments (HHRA) are conducted to assess the predicted magnitude of impacts of chemical emissions on human health. One exposure pathway assessed for First Nations communities is the consumption of traditional plants, such as muskeg tea (Labrador tea) (Ledum/Rhododendron groenlandicum) and mint (Mentha arvensis). These plants are used to make tea and are not typically consumed in their raw form. Traditional practices were used to harvest muskeg tea leaves and mint leaves by two First Nations communities in northern Alberta, Canada. Under the direction of community elders, community youth collected and dried plants to make tea. Soil, plant, and tea decoction samples were analyzed for inorganic elements using inductively coupled plasma‐mass spectrometry. Concentrations of inorganic elements in the tea decoctions were orders of magnitude lower than in the vegetation (e.g., manganese 0.107 mg/L in tea, 753 mg/kg in leaves). For barium, the practice of assessing ingestion of raw vegetation would have resulted in a hazard quotient (HQ) greater than the benchmark of 0.2. Using measured tea concentrations it was determined that exposure would result in risk estimates orders of magnitude below the HQ benchmark of 0.2 (HQ = 0.0049 and 0.017 for muskeg and mint tea, respectively). An HHRA calculating exposure to tea vegetation through direct ingestion of the leaves may overestimate risk. The results emphasize that food preparation methods must be considered when conducting an HHRA. This study illustrates how collaboration between Western scientists and First Nations communities can add greater clarity to risk assessments.  相似文献   

4.
This article presents a general model for estimating population heterogeneity and "lack of knowledge" uncertainty in methylmercury (MeHg) exposure assessments using two-dimensional Monte Carlo analysis. Using data from fish-consuming populations in Bangladesh, Brazil, Sweden, and the United Kingdom, predictive model estimates of dietary MeHg exposures were compared against those derived from biomarkers (i.e., [Hg]hair and [Hg]blood). By disaggregating parameter uncertainty into components (i.e., population heterogeneity, measurement error, recall error, and sampling error) estimates were obtained of the contribution of each component to the overall uncertainty. Steady-state diet:hair and diet:blood MeHg exposure ratios were estimated for each population and were used to develop distributions useful for conducting biomarker-based probabilistic assessments of MeHg exposure. The 5th and 95th percentile modeled MeHg exposure estimates around mean population exposure from each of the four study populations are presented to demonstrate lack of knowledge uncertainty about a best estimate for a true mean. Results from a U.K. study population showed that a predictive dietary model resulted in a 74% lower lack of knowledge uncertainty around a central mean estimate relative to a hair biomarker model, and also in a 31% lower lack of knowledge uncertainty around central mean estimate relative to a blood biomarker model. Similar results were obtained for the Brazil and Bangladesh populations. Such analyses, used here to evaluate alternative models of dietary MeHg exposure, can be used to refine exposure instruments, improve information used in site management and remediation decision making, and identify sources of uncertainty in risk estimates.  相似文献   

5.
Typical exposures to lead often involve a mix of long-term exposures to relatively constant exposure levels (e.g., residential yard soil and indoor dust) and highly intermittent exposures at other locations (e.g., seasonal recreational visits to a park). These types of exposures can be expected to result in blood lead concentrations that vary on a temporal scale with the intermittent exposure pattern. Prediction of short-term (or seasonal) blood lead concentrations arising from highly variable intermittent exposures requires a model that can reliably simulate lead exposures and biokinetics on a temporal scale that matches that of the exposure events of interest. If exposure model averaging times (EMATs) of the model exceed the shortest exposure duration that characterizes the intermittent exposure, uncertainties will be introduced into risk estimates because the exposure concentration used as input to the model must be time averaged to account for the intermittent nature of the exposure. We have used simulation as a means of determining the potential magnitude of these uncertainties. Simulations using models having various EMATs have allowed exploration of the strengths and weaknesses of various approaches to time averaging of exposures and impact on risk estimates associated with intermittent exposures to lead in soil. The International Commission of Radiological Protection (ICRP) model of lead pharmacokinetics in humans simulates lead intakes that can vary in intensity over time spans as small as one day, allowing for the simulation of intermittent exposures to lead as a series of discrete daily exposure events. The ICRP model was used to compare the outcomes (blood lead concentration) of various time-averaging adjustments for approximating the time-averaged intake of lead associated with various intermittent exposure patterns. Results of these analyses suggest that standard approaches to time averaging (e.g., U.S. EPA) that estimate the long-term daily exposure concentration can, in some cases, result in substantial underprediction of short-term variations in blood lead concentrations when used in models that operate with EMATs exceeding the shortest exposure duration that characterizes the intermittent exposure. Alternative time-averaging approaches recommended for use in lead risk assessment more reliably predict short-term periodic (e.g., seasonal) elevations in blood lead concentration that might result from intermittent exposures. In general, risk estimates will be improved by simulation on shorter time scales that more closely approximate the actual temporal dynamics of the exposure.  相似文献   

6.
Putzrath  Resha M.  Wilson  James D. 《Risk analysis》1999,19(2):231-247
We investigated the way results of human health risk assessments are used, and the theory used to describe those methods, sometimes called the NAS paradigm. Contrary to a key tenet of that theory, current methods have strictly limited utility. The characterizations now considered standard, Safety Indices such as Acceptable Daily Intake, Reference Dose, and so on, usefully inform only decisions that require a choice between two policy alternatives (e.g., approve a food additive or not), decided solely on the basis of a finding of safety. Risk is characterized as the quotient of one of these Safety Indices divided by an estimate of exposure: a quotient greater than one implies that the situation may be considered safe. Such decisions are very widespread, both in the U. S. federal government and elsewhere. No current method is universal; different policies lead to different practices, for example, in California's Proposition 65, where statutory provisions specify some practices. Further, an important kind of human health risk assessment is not recognized by this theory: this kind characterizes risk as likelihood of harm, given estimates of exposure consequent to various decision choices. Likelihood estimates are necessary whenever decision makers have many possible decision choices and must weigh more than two societal values, such as in EPA's implementation of conventional air pollutants. These estimates can not be derived using current methods; different methods are needed. Our analysis suggests changes needed in both the theory and practice of human health risk assessment, and how what is done is depicted.  相似文献   

7.
Estimates of the lifetime-absorbed daily dose (LADD) of acrylamide resulting from use of representative personal-care products containing polyacrylamides have been developed. All of the parameters that determine the amount of acrylamide absorbed by an individual vary from one individual to another. Moreover, for some parameters there is uncertainty as to which is the correct or representative value from a range of values. Consequently, the parameters used in the estimation of the LADD of acrylamide from usage of a particular product type (e.g., deodorant, makeup, etc.) were represented by distributions evaluated using Monte Carlo analyses.((1-4)) From these data, distributions of values for key parameters, such as the amount of acrylamide in polyacrylamide, absorption fraction, etc., were defined and used to provide a distribution of LADDs for each personal-care product. The estimated total acrylamide LADD (across all products) for males and females at the median, mean, and 95th percentile of the distribution of individual LADD values were 4.7 x 10(-8), 2.3 x 10(-7), and 7.3 x 10(-7) mg/kg/day for females and 3.6 x 10(-8), 1.7 x 10(-7), and 5.4 x 10(-7) mg/kg/day for males. The ratio of the LADDs to risk-specific dose corresponding to a target risk level of 1 x 10(-5), the acceptable risk level for this investigation, derived using approaches typically used by the FDA, the USEPA, and proposed for use by the European Union (EU) were also calculated. All ratios were well below 1, indicating that all the extra lifetime cancer risk from the use of polyacrylamide-containing personal-care products, in the manner assumed in this assessment, are well below acceptable levels. Even if it were assumed that an individual used all of the products together, the estimated LADD would still provide a dose that was well below the acceptable risk levels.  相似文献   

8.
A recent report by the National Academy of Sciences estimates that the radiation dose to the bronchial epithelium, per working level month (WLM) of radon daughter exposure, is about 30% lower for residential exposures than for exposures received in underground mines. Adjusting the previously published BEIR IV radon risk model accordingly, the unit risk for indoor exposures of the general population is about 2.2 x 10(-4) lung cancer deaths (lcd)/WLM. Using results from EPA's National Residential Radon Survey, the average radon level is estimated to be about 1.25 pCi/L, and the annual average exposure about 0.242 WLM. Based on these estimates, 13,600 radon-induced lcd/yr are projected for the United States. A quantitative uncertainty analysis was performed, which considers: statistical uncertainties in the epidemiological studies of radon-exposed miners; the dependence of risk on age at, and time since, exposure; the extrapolation of risk estimates from mines to homes based on comparative dosimetry; and uncertainties in the radon daughter levels in homes and in the average residential occupancy. Based on this assessment of the uncertainties in the unit risk and exposure estimates, an uncertainty range of 7000-30000 lcd/yr is derived.  相似文献   

9.
Increase in business across international borders has led to many studies demonstrating the need for “global” managers. However, few operational frameworks for a global mindset have been proposed. This paper discusses the characteristics of such a global mindset in terms of conceptualization/contextualization abilities. In particular, the paradigm developed by Kefalas [Thunderbird Int. Bus. Rev. 40 (6) (1998) 547-561] was used to determine whether managers in U.S. textile and apparel industries can be defined as “globally minded”. Empirical results indicate that U.S. managers scored higher on conceptualization than on contextualization. The study demonstrates the importance of training on the development of global mindsets and the need for U.S. managers to improve their abilities in adapting to the local context, i.e., contextualization. It is recommended that global corporations should place more emphasis on the training of these skills prior to international assignments of their managers.  相似文献   

10.
Application of Geostatistics to Risk Assessment   总被引:3,自引:0,他引:3  
Geostatistics offers two fundamental contributions to environmental contaminant exposure assessment: (1) a group of methods to quantitatively describe the spatial distribution of a pollutant and (2) the ability to improve estimates of the exposure point concentration by exploiting the geospatial information present in the data. The second contribution is particularly valuable when exposure estimates must be derived from small data sets, which is often the case in environmental risk assessment. This article addresses two topics related to the use of geostatistics in human and ecological risk assessments performed at hazardous waste sites: (1) the importance of assessing model assumptions when using geostatistics and (2) the use of geostatistics to improve estimates of the exposure point concentration (EPC) in the limited data scenario. The latter topic is approached here by comparing design-based estimators that are familiar to environmental risk assessors (e.g., Land's method) with geostatistics, a model-based estimator. In this report, we summarize the basics of spatial weighting of sample data, kriging, and geostatistical simulation. We then explore the two topics identified above in a case study, using soil lead concentration data from a Superfund site (a skeet and trap range). We also describe several areas where research is needed to advance the use of geostatistics in environmental risk assessment.  相似文献   

11.
A California Environmental Protection Agency (Cal/EPA) report concluded that a reasonable and likely explanation for the increased lung cancer rates in numerous epidemiological studies is a causal association between diesel exhaust exposure and lung cancer. A version of the present analysis, based on a retrospective study of a U.S. railroad worker cohort, provided the Cal/EPA report with some of its estimates of lung cancer risk associated with diesel exhaust. The individual data for that cohort study furnish information on age, employment, and mortality for 56,000 workers over 22 years. Related studies provide information on exposure concentrations. Other analyses of the original cohort data reported finding no relation between measures of diesel exhaust and lung cancer mortality, while a Health Effects Institute report found the data unsuitable for quantitative risk assessment. None of those three works used multistage models, which this article uses in finding a likely quantitative, positive relations between lung cancer and diesel exhaust. A seven-stage model that has the last or next-to-last stage sensitive to diesel exhaust provides best estimates of increase in annual mortality rate due to each unit of concentration, for bracketing assumptions on exposure. Using relative increases of risk and multiplying by the background lung cancer mortality rates for California, the 95% upper confidence limit of the 70-year unit risks for lung cancer is estimated to be in the range 2.1 x 10(-4) (microg/m3)(-1) to 5.5 x 10(-4) (microg/m3)(-1). These risks constitute the low end of those in the Cal/EPA report and are below those reported by previous investigators whose estimates were positive using human data.  相似文献   

12.
There are a number of sources of variability in food consumption patterns and residue levels of a particular chemical (e.g., pesticide, food additive) in commodities that lead to an expected high level of variability in dietary exposures across a population. This paper focuses on examples of consumption pattern survey data for specific commodities, namely that for wine and grape juice, and demonstrates how such data might be analyzed in preparation for performing stochastic analyses of dietary exposure. Data from the NIAAA/NHIS wine consumption survey were subset for gender and age group and, with matched body weight data from the survey database, were used to define empirically-based percentile estimates for wine intake (μl wine/kg body weight) for the strata of interest. The data for these two subpopulations were analyzed to estimate 14-day consumption distributional statistics and distributions for only those days on which wine was consumed. Data subsets for all wine-consuming adults and wine-consuming females ages 18 through 45, were determined to fit a lognormal distribution ( R 2= 0.99 for both datasets). Market share data were incorporated into estimation of chronic exposures to hypothetical chemical residues in imported table wine. As a separate example, treatment of grape juice consumption data for females, ages 18–40, as a simple lognormal distribution resulted in a significant underestimation of intake, and thus exposure, because the actual distribution is a mixture (i.e., multiple subpopulations of grape juice consumers exist in the parent distribution). Thus, deriving dietary intake statistics from food consumption survey data requires careful analysis of the underlying empirical distributions.  相似文献   

13.
《The Leadership Quarterly》2002,13(3):217-242
We tested several hypotheses derived from Gardner and Avolio's [Acad. Manage. Rev. 23 (1998) 32.] self-presentational theory of charismatic leadership. We collected multisource field data in an information technology (IT) consulting firm and examined linkages among managers' self-system attributes (i.e., desired charismatic identity, self-monitoring), pro-social and self-serving impression management of managers, charismatic leadership of managers, and two measures of performance. Eighty-three managers provided self-reports of self-system attributes. Six months later, 249 subordinates rated the focal managers' impression management and charismatic leadership styles. Superiors of the focal managers provided performance ratings 7 months after collecting the subordinate ratings. Results indicated that complexity of desired charismatic identity was positively related to self-monitoring. Self-monitoring was negatively related to ratings of pro-social impression management and positively related to ratings of self-serving impression management. Pro-social impression management related positively to charismatic leadership, which predicted managerial and unit performance.  相似文献   

14.
张继勋  张丽霞 《南开管理评论》2012,15(3):101-109,149
会计信息在投资者的投资决策过程中发挥着十分重要的作用,其质量直接影响着投资者的判断和决策.会计估计在提高会计信息相关性的同时,也为公司管理层提供了盈余管理的空间.本文实验检验了对会计估计的准确性进行事后披露这一机制是否有助于个体投资者做出正确的判断和决策,以及行业共识信息对这一机制发挥作用的影响.研究发现:(1)事后披露会计估计准确性的信息只有通过行业共识信息的辅助才能有效发挥作用,即只有在两者的共同作用下,个体投资者才能够正确识别会计估计准确的原因,也才能够进行正确的归因,并做出正确的判断和决策;(2)投资者对会计估计的准确性会产生不同的归因,投资者的归因进一步影响了其对管理层评价,而对管理层的评价影响了其对公司市盈率的评价,对公司市盈率的评价进一步影响了投资者对其投资可能性的判断.  相似文献   

15.
Ethylene oxide (EO) has been identified as a carcinogen in laboratory animals. Although the precise mechanism of action is not known, tumors in animals exposed to EO are presumed to result from its genotoxicity. The overall weight of evidence for carcinogenicity from a large body of epidemiological data in the published literature remains limited. There is some evidence for an association between EO exposure and lympho/hematopoietic cancer mortality. Of these cancers, the evidence provided by two large cohorts with the longest follow-up is most consistent for leukemia. Together with what is known about human leukemia and EO at the molecular level, there is a body of evidence that supports a plausible mode of action for EO as a potential leukemogen. Based on a consideration of the mode of action, the events leading from EO exposure to the development of leukemia (and therefore risk) are expected to be proportional to the square of the dose. In support of this hypothesis, a quadratic dose-response model provided the best overall fit to the epidemiology data in the range of observation. Cancer dose-response assessments based on human and animal data are presented using three different assumptions for extrapolating to low doses: (1) risk is linearly proportionate to dose; (2) there is no appreciable risk at low doses (margin-of-exposure or reference dose approach); and (3) risk below the point of departure continues to be proportionate to the square of the dose. The weight of evidence for EO supports the use of a nonlinear assessment. Therefore, exposures to concentrations below 37 microg/m3 are not likely to pose an appreciable risk of leukemia in human populations. However, if quantitative estimates of risk at low doses are desired and the mode of action for EO is considered, these risks are best quantified using the quadratic estimates of cancer potency, which are approximately 3.2- to 32-fold lower, using alternative points of departure, than the linear estimates of cancer potency for EO. An approach is described for linking the selection of an appropriate point of departure to the confidence in the proposed mode of action. Despite high confidence in the proposed mode of action, a small linear component for the dose-response relationship at low concentrations cannot be ruled out conclusively. Accordingly, a unit risk value of 4.5 x 10(-8) (microg/m3)(-1) was derived for EO, with a range of unit risk values of 1.4 x 10(-8) to 1.4 x 10(-7) (microg/m3)(-1) reflecting the uncertainty associated with a theoretical linear term at low concentrations.  相似文献   

16.
A review of epidemiology literature revealed that only studies conducted in Africa and Asia included data adequate to permit quantitative assessment of the dose-response relationship between aflatoxin exposure levels and liver cancer rates. Although these studies were judged adequate, their direct use to predict risks in U.S. populations may be questioned since hepatitis B virus (HBV) infections are far more common in the studied areas than in the U.S. Recent research indicates that, if aflatoxin contributes to the development of liver cancer, it almost always does so in the presence of HBV infection. The African/Asian data do not permit us to estimate the potency of aflatoxin in the absence of HBV. Recognizing this, these data can only be used to establish upper limits for the predicted excess lifetime risk for liver cancer in the U.S. When used in conjunction with aflatoxin exposure estimates for the Southeast U.S., these data predict a liver cancer rate, due to aflatoxin alone, far above that actually observed due to all causes; this provides an indication of the conservatism of this approach. Data from the Southeast U.S. may be used to estimate an excess lifetime risk for liver cancer of 2.17 x 10(-6) x (aflatoxin intake, ng/kg/day).  相似文献   

17.
Biomonitoring programs for urinary chromium (Cr) typically attempt to evaluate occupational exposure via the inhalation route. This study investigated whether Cr can be detected in the urine of people following the ingestion of soils that contain relatively high concentrations of chromium in chromite ore processing residue (COPR). To evaluate the reasonableness of using urinary monitoring to assess environmental exposure, six volunteers ingested 400 mg of soil/day (low-dose group), two others ingested 2.0 g of soil/day (high-dose group) for 3 consecutive days, and one person ingested a placebo on each of 3 days. The soil and COPR mixture contained concentrations of total chromium (Cr) and hexavalent chromium [Cr(VI)] of 103 ± 20 and 9.3 ± 3.8 mg/kg, respectively. Therefore, the low-dose group ingested 41 μg Cr/day [including 3.7 μg Cr(VI)] and the high-dose group ingested 206 μg Cr/day [including 18.6 μg Cr(VI)] on each of 3 consecutive days. All urine samples were collected and analyzed individually for total Cr on the day prior to dosing, during the 3 days of dosing, and up to the first void 48 h after the last dose. No significant increases in urinary Cr excretion were found when background excretion data were compared with data following each of the 3 days of dosing or in daily mean urine concentrations of the high- vs the low-dose groups. It appears that Cr present in a soil and COPR mixture at Cr doses up to 200 μg/day is not sufficiently bioavailable for biomonitoring of urine to be informative. These results are consistent with previously published findings suggesting that incidental exposure to dusts and soils containing comparable levels of Cr will not result in increased concentrations of Cr in urine.  相似文献   

18.
Detection of heavy metals at trace or higher levels in foods and food ingredients is not unexpected given the widespread unavoidable presence of several metals in nature, coupled with advancement in analytical methods and lowering limits of detection. To assist risk managers with a rapid risk assessment when facing these situations, a metal dietary exposure screening tool (MDEST) was developed. The tool uses food intake rates based on the National Health and Nutrition Examination Survey 2005–2010 consumption data for the U.S. population two+ years and up and for infants age six months to <two years based on the Nestlé Feeding Infants and Toddlers Study, and existing exposure limits for several frequently detected metals (e.g., inorganic arsenic, cadmium, chromium, lead, and mercury). The tool has data entry fields for detected concentrations and includes algorithms that combine metal levels with consumption data to generate screening‐level exposure estimates, which it then compares to MDEST assigned default portions of the exposure limits in the risk characterization module. As a screening‐level tool, the risk assessment output is intentionally conservative, public health protective, and useful for a rapid assessment to set aside issues that are not of concern. Issues that cannot be readily resolved using this screening tool will need to be further evaluated with more refined input data that are tailored to the specific question or situation under consideration.  相似文献   

19.
Biomagnification of organochlorine and other persistent organic contaminants by higher trophic level organisms represents one of the most significant sources of uncertainty and variability in evaluating potential risks associated with disposal of dredged materials. While it is important to distinguish between population variability (e.g., true population heterogeneity in fish weight, and lipid content) and uncertainty (e.g., measurement error), they can be operationally difficult to define separately in probabilistic estimates of human health and ecological risk. We propose a disaggregation of uncertain and variable parameters based on: (1) availability of supporting data; (2) the specific management and regulatory context (in this case, of the U.S. Army Corps of Engineers/U.S. Environmental Protection Agency tiered approach to dredged material management); and (3) professional judgment and experience in conducting probabilistic risk assessments. We describe and quantitatively evaluate several sources of uncertainty and variability in estimating risk to human health from trophic transfer of polychlorinated biphenyls (PCBs) using a case study of sediments obtained from the New York-New Jersey Harbor and being evaluated for disposal at an open water off-shore disposal site within the northeast region. The estimates of PCB concentrations in fish and dietary doses of PCBs to humans ingesting fish are expressed as distributions of values, of which the arithmetic mean or mode represents a particular fractile. The distribution of risk values is obtained using a food chain biomagnification model developed by Gobas by specifying distributions for input parameters disaggregated to represent either uncertainty or variability. Only those sources of uncertainty that could be quantified were included in the analysis. Results for several different two-dimensional Latin Hypercube analyses are provided to evaluate the influence of the uncertain versus variable disaggregation of model parameters. The analysis suggests that variability in human exposure parameters is greater than the uncertainty bounds on any particular fractile, given the described assumptions.  相似文献   

20.
Marketing communication intensity (i.e., the ratio of advertising and promotional expenditures to sales) has been an important topic for both business managers and academics. Here, we investigate cross-sectional and time-series variation of communication intensity due to: type of offering (product versus service) and type of market (consumer versus industrial). Overall, we find that both of these factors affect variation of communication intensity across industries and over time. However, the effect of market type is much more dramatic than the effect of offering type. Such knowledge about patterns in communication intensity levels helps managers make decisions about how much to spend on advertising and promotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号