首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of state factors can adequately describe the biogeochemistry and geochemistry of relatively undisturbed surface waters. Watersheds with increasing proportions of urban and suburban land use, particularly in sub-tropical, semi-arid and arid urban areas, that utilize irrigation for turfgrass and landscaping may have a low flow urban signature that relates to the source water used by municipal water suppliers. We examined thirteen watersheds; four with waste water treatment plants (24–67% urbanization), four rural (< 30% urbanization) and five urban (> 30% urbanization) in a humid sub-tropical oak savannah in south-central Texas. Three of our urban and one of our rural watersheds displayed the signature of municipal tap water. Three out of four watersheds with waste water treatment plants displayed the signature of treated sewage effluent. We suggest as a result of this study that the chemistry of municipal tap water particularly that with high sodium and bicarbonate, used in urban watersheds for irrigating turfgrass and landscapes may have detrimental effects on base flow stream water quality after it has interacted with watershed soils.  相似文献   

2.
Randrup  T.B.  McPherson  E.G.  Costello  L.R. 《Urban Ecosystems》2001,5(3):209-225

Literature relevant to tree root and urban infrastructure conflicts is reviewed. Although tree roots can conflict with many infrastructure elements, sidewalk and curb conflicts are the focus of this review. Construction protocols, urban soils, root growth, and causal factors (soil conditions, limited planting space, tree size, variation in root architecture, management practices, and construction materials) are discussed. Because costs related to sidewalk and curb damage are substantial, a review of research addressing repair, mitigation, prevention, and litigation costs is included. Finally, future research needs are discussed.

Potential for conflicts between trees and sidewalks/curbs is high when one or more of these factors are present: tree species that are large at maturity, fast growing trees, trees planted in restricted soil volumes, shallow top soil (hard-pan underneath top-soil), shallow foundations underneath the sidewalk (limited or no base materials), shallow irrigation, distances between the tree and sidewalk of less than 2.0–3.0 m., trees greater than 15 to 20 years old.

The results of this survey indicate that cities are spending substantial sums of money to address conflicts between street tree roots and infrastructure. It can be inferred that most of these expenditures are spent dealing with problems that already exist. However, this raises the question: How much is being spent now to ensure that conflicts are minimized in the future?

Future research should concentrate on plant factors, site design, and construction of sidewalks and curbs. Also, more knowledge is needed about interactions between root growth and management techniques, such as pruning and irrigation. Finally, there is need for studies that will assist policy-makers to efficiently allocate funds among repair, mitigation, prevention, and legal remedies.

  相似文献   

3.
Hadeda Ibis (Bostrychia hagedash) have increased in population size and expanded in range in South Africa possibly as a result of increased use of exotic trees for nesting and roosting in urban areas. We investigated the urban nesting and roosting sites of the Hadeda Ibis by measuring tree height and species used by Hadeda Ibis for nesting and roosting in Pietermaritzburg, KwaZulu-Natal, South Africa. We expected Hadeda Ibis nests and roosts to have habitats, like wetlands, to be within 10 km of the roost or nest tree. Hadeda Ibis nest and roost locations were mapped using ArcGIS and available resources (grasslands, wetlands, plantations, other natural water sources) 10 km around each roost and nest tree were determined. Results showed that Hadeda Ibis use exotic trees for nesting and roosting in urban areas more than indigenous trees. This may be because exotic trees are more available in urban environments, particularly those trees that have ornamental value. Hadeda Ibis did not nest and roost closer to expected resources. Although previously associated with wetlands, Hadeda Ibis in urban environments were not close to natural water sources. This can be explained by swimming pools providing accessible drinking water and well watered lawns providing suitable foraging habitat therefore allowing them to roost and nest in this urban habitat.  相似文献   

4.
Influence of seasonality and vegetation type on suburban microclimates   总被引:2,自引:0,他引:2  
Urbanization is responsible for some of the fastest rates of land-use change around the world, with important consequences for local, regional, and global climate. Vegetation, which represents a significant proportion of many urban and suburban landscapes, can modify climate by altering local exchanges of heat, water vapor, and CO2. To determine how distinct urban forest communities vary in their microclimate effects over time, we measured stand-level leaf area index, soil temperature, infrared surface temperature, and soil water content over a complete growing season at 29 sites representing the five most common vegetation types in a suburban neighborhood of Minneapolis–Saint Paul, Minnesota. We found that seasonal patterns of soil and surface temperatures were controlled more by differences in stand-level leaf area index and tree cover than by plant functional type. Across the growing season, sites with high leaf area index had soil temperatures that were 7°C lower and surface temperatures that were 6°C lower than sites with low leaf area index. Site differences in mid-season soil temperature and turfgrass ground cover were best explained by leaf area index, whereas differences in mid-season surface temperature were best explained by percent tree cover. The significant cooling effects of urban tree canopies on soil temperature imply that seasonal changes in leaf area index may also modulate CO2 efflux from urban soils, a highly temperature-dependent process, and that this should be considered in calculations of total CO2 efflux for urban carbon budgets. Field-based estimates of percent tree cover were found to better predict mid-season leaf area index than satellite-derived estimates and consequently offer an approach to scale up urban biophysical properties.  相似文献   

5.
A limited number of species and genera currently dominate the tree stock in streets and urban sites. There has been considerable and persistent argumentation for the necessity of using a more varied and stress-tolerant selection of tree species. This paper reports results from a dendroecological study of six steppe forest reserves in north-east Romania and in the adjacent part of the Republic of Moldavia, where water stress regimes during the growing season and winter temperatures are comparable to those of inner city environments in northern parts of Central Europe and adjoining milder parts of Northern Europe (CNE-region). In each forest reserve, tree growth patterns were studied in five 20 m × 20 m plots, resulting in a total of 30 plots with an allocated area of 1.2 hectares. For all trees, height and diameter were measured and related to tree age by coring in order to detect the species growth and performance in these sites. In total 23 tree species were found, 13 of which were represented by 25 or more individuals with documented good growth in the study plots. The majority of these 13 species have very limited use in urban greenery in the CNE-region today and thus have the potential to increase the species diversity of the current urban tree population through further selection work.  相似文献   

6.
Trees in urban ecosystems are valued for shade and cooling effects, reduction of CO2 emissions and pollution, and aesthetics. However, in arid and semi-arid regions, urban trees must be maintained through supplemental irrigation, in competition with other water needs. Currently, a comprehensive understanding of the factors which influence water use of urban tree species is lacking. In order to study the drivers of whole tree water use of two common species in the Los Angeles Basin urban forest, four sites in Los Angeles and Orange County were instrumented with sap flow and meteorological sensors. These sites allowed comparisons of the water use of a native riparian (Platanus racemosa Nutt.; California sycamore) and non-native (Pinus canariensis C. Sm.; Canary Island pine) Mediterranean species, as well as the spatial variability in water use under different environmental and management conditions. We found higher rates of sapflux (J O ) in native California sycamore as compared to non-native Canary Island pine. Within each species, we found considerable site-to-site variability in the magnitude and seasonality of J O . For Canary Island pine, the majority of inter-site variability derived from differences in water availability: response to vapor pressure deficit was similar during a period without water limitations. In contrast, California sycamore did not appear to experience water limitation at any site; however, there was considerable spatial variability in water use, potentially linked to differences in nutrient availability. Whole tree transpiration (E) was similar for the two species when water was not limiting, but Canary Island pine was able to withstand unirrigated conditions with a very low E. These results add to the currently small pool of data on urban tree water use and ecophysiology, and contribute to establishing a more quantitative understanding of urban tree function.  相似文献   

7.
Urbanization substantially increases nitrogen (N) inputs and hydrologic losses relative to wildland ecosystems, although the fate of N additions to lawns and remnant grasslands remains contested. In montane semi-arid ecosystems, N cycling is often closely coupled to snowmelt (the dominant period of infiltration) and snow cover, which impact soil temperature and moisture. Here, we compared soil N dynamics between a fertilized and irrigated urban lawn and nearby riparian meadow in Salt Lake City, Utah during a snow manipulation experiment. Snow removal increased freeze/thaw events but did not affect N pools, microbial biomass, denitrification potential, or soil oxygen (O2). Mineral N was similar between sites despite lawn fertilization, but dissolved organic N (DON) was four-fold greater (2.1 ± 0.1 mg N l?1) in lawn soil water. Infiltration was lower in the lawn subsoil, and leaching losses (modeled with Hydrus) were small at both sites (< 2 kg N ha?1 y?1) despite substantial lawn fertilization. Lawn soil O2 fluctuated between 20.9 and 1.6 % following snowmelt and irrigation, but remained near 20 % in the meadow; the lawn had more reducing microsites as indicated by iron speciation. Post-snowmelt potential denitrification was six-fold greater in the lawn than the meadow. Lawns can potentially provide hotspots of denitrification in a semi-arid landscape that exceed some natural riparian ecosystems, whereas DON may represent an increasingly important form of N loss from lawns.  相似文献   

8.
There has been an increasing interest in the evolution of urban forests. This research uses historic and digital aerial photography to quantify changes in tree density in Los Angeles, California since the 1920’s. High-resolution geographic information system analysis (4 to 6 time periods) of three regions (San Fernando Valley, Hollywood, Los Angeles Basin) of Los Angeles reveals that there has not always been an increase in tree density with time. Tree densities on public and private land were highest in the 1940’s in Hollywood, while the San Fernando Valley and Los Angeles Basin experienced a near linear increase in tree density on both private and public land since the 1920’s. When historic tree density reconstructions were examined for the 15 Los Angeles city council districts from the 1920’s, 1950’s and 2006, most districts in Los Angeles have experienced a significant increase in tree density, however, there has been wide variation in tree densities among city council districts. Trees densities have generally been higher on private land since the 1920’s and currently tree densities on private land are significantly higher than on public land. Results suggest the evolution of urban forests in Los Angeles mirrors the dynamics of urban forests in desert and grassland cities. It is possible to reconstruct the development of urban forests in sections of cities using historic and contemporary aerial photography. We estimated that Los Angeles averages approximately 104 trees per hectare (82 private land, 22 public land) based on 2006 imagery at 0.3 m resolution, however, field validation suggests that we identified only 73% of trees. Although there is still space to plant trees on public land, private land owners will need to be heavily involved in order to achieve the goals of Los Angeles’ Million Tree Initiative.  相似文献   

9.
Investigations of the urban street tree forest of Mendoza, Argentina   总被引:1,自引:0,他引:1  
The investigation of the urban street trees was undertaken in the oasis city Mendoza, Argentina. The analysis included 1,680 urban street trees in their structure (species, age, and spatial structure), vitality and irrigation conditions. A questioning of 120 residents analysed the perception and acceptance of the urban trees by urban dwellers. Different urban structures, residential, commercial and residential mixed structures and the city centre were investigated. The results show clearly the insufficient maintenance of the trees (composition, aging, irrigation, pruning etc.) and damaged irrigation system with leads to a loss of vitality. The questioning showed that easily recognisable problems (insufficient pruning etc.) are more reflected by people than long term problems (irrigation). There is a different reflection of urban street tree problems in the different urban areas, related to status, information level and management. The maintenance and relation to urban street trees was best in the residential area. Not only better maintenance of the trees but also a clearer recognition of street tree problems by residents and by the responsible municipal institutions is urgently needed. A public-private partnership and more environmental education could help to overcome the problems.  相似文献   

10.
Spatial variation in soil inorganic nitrogen across an arid urban ecosystem   总被引:4,自引:1,他引:3  
We explored variations in inorganic soil nitrogen (N) concentrations across metropolitan Phoenix, Arizona, and the surrounding desert using a probability-based synoptic survey. Data were examined using spatial statistics on the entire region, as well as for the desert and urban sites separately. Concentrations of both NO3-N and NH4-N were markedly higher and more heterogeneous amongst urban compared to desert soils. Regional variation in soil NO3-N concentration was best explained by latitude, land use history, population density, along with percent cover of impervious surfaces and lawn, whereas soil NH4-N concentrations were related to only latitude and population density. Within the urban area, patterns in both soil NO3-N and NH4-N were best predicted by elevation, population density and type of irrigation in the surrounding neighborhood. Spatial autocorrelation of soil NO3-N concentrations explained 49% of variation among desert sites but was absent between urban sites. We suggest that inorganic soil N concentrations are controlled by a number of ‘local’ or ‘neighborhood’ human-related drivers in the city, rather than factors related to an urban-rural gradient.  相似文献   

11.
Wooded habitats represent hotspots of urban biodiversity, however, urban development imposes pressure on biota in these refuges. Identification of the most influential habitat attributes and the role of local urban characteristics is crucial for proper decisions on management practices supporting biodiversity. We aimed to identify well manageable fine-scale habitat attributes to suggest specific, feasible and affordable management recommendations for green space in cities. We analysed species richness of woodland-associated bird communities and incidence of individual species at 290 sites in a wide variety of green areas scattered across the city of Prague, Czech Republic. Generalized linear mixed models (GLMM) and regression tree analyses were used to identify site-scale (100 m radius sampling sites) and local-scale (200 m and 500 m radius plots) habitat attributes shaping the bird communities at individual sites. Logistic regression was used to assess the responses of individual species to habitat characteristics. Our results imply that at the site scale, management practices should focus on maintenance and promoting species-diverse and older tree stands, with a mixture of coniferous and deciduous trees. Water-bodies and accompanying riparian habitats should be maintained and carefully managed to preserve high-quality remnants of natural vegetation. Presence of a few old trees (about 12 % of tree cover with DBH?>?50 cm) or small urban standing water and watercourses enrich the bird community by at least two species. Species richness of woodland avifauna at particular sites is further supported by the total amount of tree cover in the surroundings, including scattered greenery of public spaces and private gardens. We conclude that proper management at site scale has the potential to increase biodiversity of the urban environment.  相似文献   

12.
Urban green spaces provide important ecosystem services, such as amenity, biodiversity, productivity, climate amelioration, hydrological and biogeochemical cycling. Intensively managed urban gardens can sequester carbon through vegetation growth and soil C increase, but may experience nitrous oxide (N2O) emissions and reduced soil methane (CH4) uptake from irrigation and fertiliser use. Soil atmosphere exchange of N2O, CH4 and carbon dioxide (CO2) was measured in lawn and wood chip mulched garden areas in Melbourne, Australia in winter, spring and summer under various water and fertiliser regimes. Gas exchange before and after lawn fertiliser application was measured continuously for three weeks using an automated chamber system. Applying fertiliser led to a peak N2O emission of >60 μg N m−2 h−1, but overall only weekly irrigation (10 mm) significantly increased mean soil N2O emissions above that in other treatments. Under mulch, mean soil N2O emissions (14.0 μg N m−2 h−1) were significantly smaller than from irrigated lawn (27.9 μg N m−2 h−1), whereas mean soil CH4 uptake under mulch (−30.7 μg C m−2 h−1) was significantly greater (p < 0.01) than in any lawn treatment. Lawns were either a weak CH4 sink or source. Soil C density (0–25 cm) under mulch (12.5 kg C m−2) was greater that under lawn (8.0 kg C m−2). On a carbon dioxide equivalent (CO2-e) basis, soil N2O emissions offset the benefits of soil CH4 uptake. Mulched garden areas provide greatest C sequestration potential in soil and vegetation and the smallest non-CO2 emissions, as soil CH4 uptake offsets a large fraction of soil N2O emissions. Results of this study suggest that reducing the irrigation and fertiliser application to lawns can help mitigate GHG emissions from urban garden systems, and increasing the area of mulched perennial garden beds can also provide net GHG benefits; however, this needs to be tested in other garden systems with different soil types and environmental conditions.  相似文献   

13.
The expansion of urban areas into native habitat can have profound effects on avian populations and communities, yet little is known regarding the effects of urban features on avian reproductive success. The objective of this study was to examine the reproduction of an urban-enhanced species, the mourning dove, to determine how tree and urban landscape features affect nest-site selection and nest success. Mourning dove nests were located by systematically searching potential nest sites on a weekly basis from late-March through mid-September in 2003 and 2004. A total of 1,288 mourning dove nests were located and monitored on the Texas A&M University Campus. Of these nests, 337 (26.6%) were successful (fledged, ≥1). An equal number of potential nest sites were randomly generated in ArcGIS and assigned to non-nest trees to evaluate habitat variables associated with nest-site selection. Mourning dove nests were located in trees with a larger canopy diameter and diameter at breast height (DBH) than the computer generated potential nests and nest trees were located closer to roads and farther from buildings than non-nest trees. Within the study area, nest success was predominately influenced by the proximity of urban features with successful nests being located closer to roads and farther from buildings than unsuccessful nests.  相似文献   

14.
Wading birds (i.e, Ardeidae: herons, egrets, and bitterns) are a guild of waterbirds that forage in coastal habitats which in the US and Europe are often located in close proximity to urban centers. However, the use of urban marine habitats may have consequences for bird populations, as birds can be subject to stress from increased levels of passive and active human disturbance. We examined the effects of human disturbance, available foraging habitat, and prey abundance on wading bird density and species richness at 17 urban coastal sites in Narragansett Bay, Rhode Island USA. The sites represented a gradient of immediately adjacent residential and commercial land use (e.g., 0.0–67.7% urban land use within a 30.5 m buffer of the sites) within an urban matrix (i.e., all sites were located within a suburban center with a population of about 85,000 people). Wading bird density (0.62 ± 0.12 birds ha−1) and species richness (average 4.49 ± 0.37 species across all sites) were not influenced by passive human disturbance as measured by the extent of urban land surrounding a site. However, wading bird density and species richness both decreased significantly as active disturbance (i.e., number of boats moored or docked upstream of the site) increased (r = −0.56, F = 6.85, p = 0.019 and r = −0.73, F = 16.6, p = 0.001, respectively). In addition, both density (r = 0.72, F = 16.2, p = 0.001) and species richness (r = 0.72, F = 16.2, p = 0.001) increased concomitantly with a prey index that combines the density of fish and invertebrates on which the birds feed with the amount of available shallow water foraging habitat at a site. Our results suggest that wading birds i) may not be negatively affected by urban land surrounding estuarine foraging areas in and of itself; and ii) may be utilizing urban areas in the absence of high levels of active disturbance to take advantage of potentially enhanced prey resources. In the case where the benefits of foraging at a site outweigh the costs related to human disturbance, urban marine habitats may need to be considered for restoration or protection from further increases in active human disturbance.  相似文献   

15.
The fate of irrigation in urban ecosystems is highly uncertain, due to uncertainties in urban ecohydrology. We compared irrigation rates, soil moisture, evapotranspiration (ET), stomatal conductance, and water budgets of landscape ecosystems managed with different turfgrass species and irrigation technologies. The “Typical” landscape had a cool-season fescue and was irrigated by an automatic timer. The “Alternative1” landscape had a warm-season paspalum and a “smart” soil moisture sensor-based irrigation system. The “Alternative2” landscape had a cool-season native sedge and a “smart” weather station-based drip irrigation system. ET was measured with a portable closed chamber and modeled using a Penman-Monteith approach, and the two methods agreed well. The water applied to the Alternative1 was 54 % less than the water applied to the Typical landscape, and the water applied to the Alternative2 was 24 % less. Soil moisture was similar in the Typical and Alternative2, while Alternative1 was drier in spring. The stomatal conductance of sedge was lower than the other two species, but its ET was not lower due to higher leaf area. Irrigation efficiencies (ET/applied irrigation) were 57 - 58 %, 86 – 97 %, and 78 - 80 % for the Typical, Alternative1, and Alternative2 landscapes, respectively. Runoff was less than 2 % in each landscape, and excess irrigation primarily drained below the root zone. Differences in irrigation efficiency between landscapes were due mainly to irrigation application, which varied more than species water use. Smart irrigation systems provided substantial water savings relative to a timer-based system, and prevented significant drainage losses. The utilization of smart sensors was more important than the choice of turfgrass species for irrigation efficiency.  相似文献   

16.
Spatial and temporal databases that integrate urban tree inventories and soil quality information are needed for modern-day sustainable urban forest management. The objective of this study was to demonstrate the usefulness of low-cost and widely-available technology, such as global positioning system (GPS)–enabled cameras to photo-document sites and cloud-based products and services (Google Picasa and Fusion Tables), to aid in developing sustainable street tree management programs. Google Fusion Tables provide a cloud platform to store, share and map urban tree and soil data over time using internet connected computers, tablets or mobile devices. Although indicators of urban soil quality and best methods to assess it are not yet standardized, we demonstrate here promising indicators that are both useful and easy to incorporate into spatial and temporal databases of trees managed in urban environments. By utilizing technology, we demonstrate that site-specific urban soil quality indicators can be used together with readily-available soil rating systems specific to different plant types as a means to better evaluate and manage conditions for optimal street tree growth and health.  相似文献   

17.
I examined tree recruitment and mortality over a ten-year period at permanent plots in an urban forest, Forest Park, in Portland, Oregon. The density and diameter at breast height (dbh) for all trees living and dead were measured in 1993 and again in 2003. Data were analyzed using paired Student t-tests. I found significantly fewer live and significantly more dead trees in 2003 than in 1993. The increase in mortality was significant for all species of trees and for all sizes except large diameter trees. Mortality rates ranged from 0% to 67% at my sites. Recruitment was lower at all sites in 2003 with significantly fewer seedlings and saplings. The high mortality and low recruitment resulted in a net loss of trees at all sites. Loss of trees was not offset by increasing tree diameter, which suggests self-thinning is not the cause. No strong correlation with an urban to rural land use gradient was observed. The results may be related to global climate change or pollution. The high mortality of trees of all species in many diameter classes without a concomitant increase in recruitment could lead to dramatic changes in forest structure.  相似文献   

18.
Urban green spaces have been recognized as an important source of ecosystem services, whose quantification requires the determination of quantities related to energy, water, carbon and soil nutrient content. In this paper we propose a stochastic ecohydrological model that couples two existing models for water and nutrients in urban soil at the single street-tree scale. The model input are rainfall and irrigation, for water, and deposition and fertilization, for nitrogen, while the output are evapotranspiration, runoff and deep percolation, for water, and plant uptake and leaching, for nitrogen. The various terms are related to the amount of paved and impervious surfaces that surround the tree trunk and regulate the water and nutrient fluxes in and out the soil. Particular attention is paid to the effects of seasonal variations on plant water and nutrients through a temporal variation of the hydrologic variables (i.e., temperature and rainfall intensity and frequencies). The average model outputs are preliminarily compared with the scant existing literature data, supporting the model application to cities with different climatic conditions. The model results are used to estimate the potential for ecosystem services like tree cooling effects, soil carbon sequestration or storm-water management. Because of the minimal structure of the proposed model, it requires a very low amount of data, while accounting for the stochastic input of rainfall. In the context of climate change and increasing urbanization, the model may offer useful indications to urban planners to enhance ecosystem services while minimizing irrigation, fertilization and their related costs.  相似文献   

19.
Street trees planted at tree pits with impermeable pavements are exposed to a high level of both, atmospheric and edaphic stress. For many species tree physiology, optimal growth, and consequently long-term vitality may be hampered under these harsh conditions. Therefore, maintaining the vitality and promoting the ecosystem services provided by urban trees, for example aesthetic values and microclimatic benefits, it is important to establish trees with a high tolerance to stressful urban environments. Measurements of leaf gas exchange, leaf water potential, leaf surface temperature and chlorophyll-fluorescence were used for identification of specific response of Corylus corluna L., Ginkgo biloba L., Liriodendron tulipifera L., and Tilia cordata Mill. ‘Greenspire’. The summer months in 2013 with a period of heat and drought over eight weeks only interrupted by two rainy days were appropriate to access tree’s strategies to cope with low water availability. During the measurement period, the influence of high temperatures, high values of vapor pressure deficit (VPD) and low soil water availability on stomatal conductance, water-use efficiency (WUE) and leaf water potential (Ψmin, Ψmax ) was highest for Liriodendron followed by Ginkgo. These species showed high reductions in WUE in case of higher air temperatures and high values of VPD. Results indicate an avoidance strategy under increasing heat and VPD. In contrast, Corylus and Tilia followed a tolerance strategy indicated by decreasing values of Ψmin and lower reductions of WUE. In conclusion, wide species-specific variation in response to high temperatures and high VPD indicates that substantial potential exists in the selection for dry and hot urban places.  相似文献   

20.
Understanding how birds exist in highly urban cities is important to maintaining biodiversity within these environments, and exotic species pose a unique opportunity to examine adaptation. The non-native monk parakeet (Myiopsitta monachus) nests mainly in cities in the United States, and in some places, is considered a nuisance by utility companies. Monk parakeets nest communally (many nests in one nest structure) and colonially (many nest structures in one area). We studied monk parakeets in urban New Jersey to determine where they nested, if nest sites were similar among parakeets nesting in trees and utility poles, and if they rebuilt following removal. Of the 51 nest structures we studied, 37% were on utility poles, 8% were on a man-made gazebo, and the rest were in trees. Nest structures located on poles were located closer to the ground, had fewer nest holes, and the distance to nearest tree was greater than for tree nest structures. The pole nest structures were closer to the top of the “canopy” or structure, and were always located on or around the pole rather than out on one of the cross beams. The nest structures were similar in size and shape whether they were located on poles, other man-made objects, or in trees. Thus monk parakeets built similar nest structures, and located them about the same distance from the ground and from houses whether they were in utility poles or in trees, leading to the conclusion that poles provide suitable sites for them. The parakeets persisted in nesting on the utility poles and another man-made gazebo despite being removed over several years, and despite the presence of other nearby unused trees. After parakeet nest structures were removed from poles by the utility company, most birds began rebuilding within the day. The persistence, despite persecution, of the monk parakeet on poles, and the fact that poles provide attractive and secure support for nest structures, suggest that they will continue to do so. Managers must either learn to live with the parakeets, redesign the utility pole structure to be less appealing to the birds, provide them with alternative nest sites on the utility poles or nearby, or continue to forcibly remove them. Local support for the parakeets, and their potential to serve as urban icons, have resulted in New Jersey’s utility company working with local enthusiasts and scientists to ensure the birds are not harmed during nest removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号