首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Frailty models for survival data   总被引:1,自引:0,他引:1  
A frailty model is a random effects model for time variables, where the random effect (the frailty) has a multiplicative effect on the hazard. It can be used for univariate (independent) failure times, i.e. to describe the influence of unobserved covariates in a proportional hazards model. More interesting, however, is to consider multivariate (dependent) failure times generated as conditionally independent times given the frailty. This approach can be used both for survival times for individuals, like twins or family members, and for repeated events for the same individual. The standard assumption is to use a gamma distribution for the frailty, but this is a restriction that implies that the dependence is most important for late events. More generally, the distribution can be stable, inverse Gaussian, or follow a power variance function exponential family. Theoretically, large differences are seen between the choices. In practice, using the largest model makes it possible to allow for more general dependence structures, without making the formulas too complicated.This paper is a revised version of a review, which together with ten papers by the author made up a thesis for a Doctor of Science degree at the University of Copenhagen.  相似文献   

2.
The present work demonstrates an application of random effects model for analyzing birth intervals that are clustered into geographical regions. Observations from the same cluster are assumed to be correlated because usually they share certain unobserved characteristics between them. Ignoring the correlations among the observations may lead to incorrect standard errors of the estimates of parameters of interest. Beside making the comparisons between Cox's proportional hazards model and random effects model for analyzing geographically clustered time-to-event data, important demographic and socioeconomic factors that may affect the length of birth intervals of Bangladeshi women are also reported in this paper.  相似文献   

3.
4.
Several survival regression models have been developed to assess the effects of covariates on failure times. In various settings, including surveys, clinical trials and epidemiological studies, missing data may often occur due to incomplete covariate data. Most existing methods for lifetime data are based on the assumption of missing at random (MAR) covariates. However, in many substantive applications, it is important to assess the sensitivity of key model inferences to the MAR assumption. The index of sensitivity to non-ignorability (ISNI) is a local sensitivity tool to measure the potential sensitivity of key model parameters to small departures from the ignorability assumption, needless of estimating a complicated non-ignorable model. We extend this sensitivity index to evaluate the impact of a covariate that is potentially missing, not at random in survival analysis, using parametric survival models. The approach will be applied to investigate the impact of missing tumor grade on post-surgical mortality outcomes in individuals with pancreas-head cancer in the Surveillance, Epidemiology, and End Results data set. For patients suffering from cancer, tumor grade is an important risk factor. Many individuals in these data with pancreas-head cancer have missing tumor grade information. Our ISNI analysis shows that the magnitude of effect for most covariates (with significant effect on the survival time distribution), specifically surgery and tumor grade as some important risk factors in cancer studies, highly depends on the missing mechanism assumption of the tumor grade. Also a simulation study is conducted to evaluate the performance of the proposed index in detecting sensitivity of key model parameters.  相似文献   

5.
In this paper, we introduce the shared gamma frailty models with two different baseline distributions namely, the generalized log-logistic and the generalized Weibull. We introduce the Bayesian estimation procedure to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. We apply these models to a real-life bivariate survival data set of McGilchrist and Aisbett related to the kidney infection data and a better model is suggested for the data.  相似文献   

6.
Analysis of incomplete durations with application to contraceptive use   总被引:1,自引:0,他引:1  
Models for analysing incomplete durations obtained from cross-sectional surveys are presented. The aim of the paper is to develop a framework for analysing the incomplete duration of episodes in progress at the time of the survey by formulating generalized linear models and fitting and assessing them by using standard statistical packages. The maximum quasi-likelihood method is used for model fitting. The choice of the distribution and the diagnostic procedures are discussed. Simulated data from two distributions (the Weibull and log-logistic distributions) are used to evaluate the methodology developed and to assess model misspecifications. A data set on the current use of the contraceptive pill from a cross-sectional survey in Egypt is analysed.  相似文献   

7.
Primal panel data models of production risk are estimated, using more flexible specifications than has previously been the practice. Production risk has important implications for the analysis of technology adoption and technical efficiency, since risk averse producers will take into account both the mean and variance of output when ranking alternative technologies. Hence, one should estimate technical change separately for the deterministic part and the risk part of thetechnology.  相似文献   

8.
Lifetime Data Analysis - In this article we extend the factor copula model to deal with right-censored event time data grouped in clusters. The new methodology allows for clusters to have variable...  相似文献   

9.
When prior information on model parameters is weak or lacking, Bayesian statistical analyses are typically performed with so-called “default” priors. We consider the problem of constructing default priors for the parameters of survival models in the presence of censoring, using Jeffreys’ rule. We compare these Jeffreys priors to the “uncensored” Jeffreys priors, obtained without considering censored observations, for the parameters of the exponential and log-normal models. The comparison is based on the frequentist coverage of the posterior Bayes intervals obtained from these prior distributions.  相似文献   

10.
"This article presents a multivariate hazard model for survival data that are clustered at two hierarchical levels.... We apply the model to an analysis of the covariates of child survival using survey data from northeast Brazil collected via a hierarchically clustered sampling scheme. We find that family and community frailty effects are fairly small in magnitude but are of importance because they alter the results in a systematic pattern."  相似文献   

11.
12.
13.
Summary The exact distributions of the productXY are derived whenX andY are independent random variables and come from the extreme value distribution of Type I, the extreme value distribution of Type II or the extreme value distribution of Type III. Of the, six possible combinations, only three yield closed-form expressions for the distribution ofXY. A detailed application of the results is provided to drought data from Nebraska. The author would like to thank the referees and the Associate Editor for carefully reading the paper and for their great help in improving the paper.  相似文献   

14.
15.
This paper presents a new parametric model for recurrent events, in which the time of each recurrence is associated to one or multiple latent causes and no information is provided about the responsible cause for the event. This model is characterized by a rate function and it is based on the Poisson-exponential distribution, namely the distribution of the maximum among a random number (truncated Poisson distributed) of exponential times. The time of each recurrence is then given by the maximum lifetime value among all latent causes. Inference is based on a maximum likelihood approach. A simulation study is performed in order to observe the frequentist properties of the estimation procedure for small and moderate sample sizes. We also investigated likelihood-based tests procedures. A real example from a gastroenterology study concerning small bowel motility during fasting state is used to illustrate the methodology. Finally, we apply the proposed model to a real data set and compare it with the classical Homogeneous Poisson model, which is a particular case.  相似文献   

16.
In this paper we propose a new lifetime model for multivariate survival data in presence of surviving fractions and examine some of its properties. Its genesis is based on situations in which there are m types of unobservable competing causes, where each cause is related to a time of occurrence of an event of interest. Our model is a multivariate extension of the univariate survival cure rate model proposed by Rodrigues et al. [37 J. Rodrigues, V.G. Cancho, M. de Castro, and F. Louzada-Neto, On the unification of long-term survival models, Statist. Probab. Lett. 79 (2009), pp. 753759. doi: 10.1016/j.spl.2008.10.029[Crossref], [Web of Science ®] [Google Scholar]]. The inferential approach exploits the maximum likelihood tools. We perform a simulation study in order to verify the asymptotic properties of the maximum likelihood estimators. The simulation study also focus on size and power of the likelihood ratio test. The methodology is illustrated on a real data set on customer churn data.  相似文献   

17.
Summary.  In the USA cancer as a whole is the second leading cause of death and a major burden to health care; thus medical progress against cancer is a major public health goal. There are many individual studies to suggest that cancer treatment breakthroughs and early diagnosis have significantly improved the prognosis of cancer patients. To understand better the relationship between medical improvements and the survival experience for the patient population at large, it is useful to evaluate cancer survival trends on the population level, e.g. to find out when and how much the cancer survival rates changed. We analyse population-based grouped cancer survival data by incorporating join points into the survival models. A join point survival model facilitates the identification of trends with significant change-points in cancer survival, when related to cancer treatments or interventions. The Bayesian information criterion is used to select the number of join points. The performance of the join point survival models is evaluated with respect to cancer prognosis, join point locations, annual percentage changes in death rates by year of diagnosis and sample sizes through intensive simulation studies. The model is then applied to grouped relative survival data for several major cancer sites from the 'Surveillance, epidemiology and end results' programme of the National Cancer Institute. The change-points in the survival trends for several major cancer sites are identified and the potential driving forces behind such change-points are discussed.  相似文献   

18.
19.
An important goal of research involving gene expression data for outcome prediction is to establish the ability of genomic data to define clinically relevant risk factors. Recent studies have demonstrated that microarray data can successfully cluster patients into low- and high-risk categories. However, the need exists for models which examine how genomic predictors interact with existing clinical factors and provide personalized outcome predictions. We have developed clinico-genomic tree models for survival outcomes which use recursive partitioning to subdivide the current data set into homogeneous subgroups of patients, each with a specific Weibull survival distribution. These trees can provide personalized predictive distributions of the probability of survival for individuals of interest. Our strategy is to fit multiple models; within each model we adopt a prior on the Weibull scale parameter and update this prior via Empirical Bayes whenever the sample is split at a given node. The decision to split is based on a Bayes factor criterion. The resulting trees are weighted according to their relative likelihood values and predictions are made by averaging over models. In a pilot study of survival in advanced stage ovarian cancer we demonstrate that clinical and genomic data are complementary sources of information relevant to survival, and we use the exploratory nature of the trees to identify potential genomic biomarkers worthy of further study.  相似文献   

20.
In the analysis of censored survival data Cox proportional hazards model (1972) is extremely popular among the practitioners. However, in many real-life situations the proportionality of the hazard ratios does not seem to be an appropriate assumption. To overcome such a problem, we consider a class of nonproportional hazards models known as generalized odds-rate class of regression models. The class is general enough to include several commonly used models, such as proportional hazards model, proportional odds model, and accelerated life time model. The theoretical and computational properties of these models have been re-examined. The propriety of the posterior has been established under some mild conditions. A simulation study is conducted and a detailed analysis of the data from a prostate cancer study is presented to further illustrate the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号