首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Sampford's unequal probability sampling method is extended to the case that the inclusion probabilities do not sum to an integer. In this case, the sampling outcome is left open for exactly one randomly chosen unit and that unit gets a new inclusion probability. Three applications are presented. Two of them challenge traditional sampling routines. The simple Pareto sampling design, which was introduced by Rosén in 1997, is also extended. The extended Pareto design is shown to be close to the extended Sampford design.  相似文献   

2.
Abstract. Two new unequal probability sampling methods are introduced: conditional and restricted Pareto sampling. The advantage of conditional Pareto sampling compared with standard Pareto sampling, introduced by Rosén (J. Statist. Plann. Inference, 62, 1997, 135, 159), is that the factual inclusion probabilities better agree with the desired ones. Restricted Pareto sampling, preferably conditioned or adjusted, is able to handle cases where there are several restrictions on the sample and is an alternative to the recent cube method for balanced sampling introduced by Deville and Tillé (Biometrika, 91, 2004, 893). The new sampling designs have high entropy and the involved random numbers can be seen as permanent random numbers.  相似文献   

3.
Abstract.  A flexible list sequential π ps sampling method is introduced and studied. It can reproduce any given sampling design without replacement, of fixed or random sample size. The method is a splitting method and uses successive updating of inclusion probabilities. The main advantage of the method is in real-time sampling situations where it can be used as a powerful alternative to Bernoulli and Poisson sampling and can give any desired second-order inclusion probabilities and thus considerably reduce the variability of the sample size.  相似文献   

4.
In this paper we consider a family of sampling designs for which increasing first‐order inclusion probabilities imply, in a specific sense, increasing conditional inclusion probabilities. It is proved that the complementary Midzuno, the conditional Poisson, and the Sampford designs belong to this family. It is shown that designs of the family are more efficient than a comparable with‐replacement design. Furthermore, the efficiency gain is explicitly given for these designs.  相似文献   

5.
Poisson sampling is a method for unequal probabilities sampling with random sample size. There exist several implementations of the Poisson sampling design, with fixed sample size, which almost all are rejective methods, that is, the sample is not always accepted. Thus, the existing methods can be time-consuming or even infeasible in some situations. In this paper, a fast and non-rejective method, which is efficient even for large populations, is proposed and studied. The method is a new design for selecting a sample of fixed size with unequal inclusion probabilities. For the population of large size, the proposed design is very close to the strict πps sampling which is similar to the conditional Poisson (CP) sampling design, but the implementation of the design is much more efficient than the CP sampling. And the inclusion probabilities can be calculated recursively.  相似文献   

6.
Order sampling with fixed distribution shape is a class of sampling schemes with inclusion probabilities approximately proportional to given size measures. In a recent article, methods were provided to compute the exact first and second order inclusion probabilities numerically when the distribution shape is of the Pareto type. In the same article, procedures were also provided for this case to adjust the parameters to get predetermined inclusion probabilities. In this paper we prove the existence and uniqueness of a solution for the latter problem, in general for any order sampling of fixed distribution shape.  相似文献   

7.
Abstract. Methods to perform fixed size sampling with prescribed second‐order inclusion probabilities are presented. The focus is on a conditional Poisson design of order 2, a CP(2) design. It is an exponential design of quadratic type and it is carefully studied. In particular, methods to find the suitable values of the parameters and methods to sample are described. Small examples illustrate.  相似文献   

8.
A class of sampling two units without replacement with inclusion probability proportional to size is proposed in this article. Many different well known probability proportional to size sampling designs are special cases from this class. The first and second inclusion probabilities of this class satisfy important properties and provide a non-negative variance estimator of the Horvitz and Thompson estimator for the population total. Suitable choice for the first and second inclusion probabilities from this class can be used to reduce the variance estimator of the Horvitz and Thompson estimator. Comparisons between different proportional to size sampling designs through real data and artificial examples are given. Examples show that the minimum variance of the Horvitz and Thompson estimator obtained from the proposed design is not attainable for the most cases at any of the well known designs.  相似文献   

9.
For fixed size sampling designs with high entropy, it is well known that the variance of the Horvitz–Thompson estimator can be approximated by the Hájek formula. The interest of this asymptotic variance approximation is that it only involves the first order inclusion probabilities of the statistical units. We extend this variance formula when the variable under study is functional, and we prove, under general conditions on the regularity of the individual trajectories and the sampling design, that we can get a uniformly convergent estimator of the variance function of the Horvitz–Thompson estimator of the mean function. Rates of convergence to the true variance function are given for the rejective sampling. We deduce, under conditions on the entropy of the sampling design, that it is possible to build confidence bands whose coverage is asymptotically the desired one via simulation of Gaussian processes with variance function given by the Hájek formula. Finally, the accuracy of the proposed variance estimator is evaluated on samples of electricity consumption data measured every half an hour over a period of 1 week.  相似文献   

10.
It is the main purpose of this paper to study the asymptotics of certain variants of the empirical process in the context of survey data. Precisely, Functional Central Limit Theorems are established under usual conditions when the sample is drawn from a Poisson or a rejective sampling design. The framework we develop encompasses sampling designs with non‐uniform first order inclusion probabilities, which can be chosen so as to optimize estimation accuracy. Applications to Hadamard differentiable functionals are considered.  相似文献   

11.
This article develops a new generalized formula to compute the inclusion probabilities of a median-ranked set sample in a finite population setting. The use of this formula is illustrated in a numerical example. Furthermore, the inclusion probabilities of a median-ranked set sample is compared with the inclusion probabilities of ranked set and simple random samples.  相似文献   

12.
The sampling designs dependent on sample moments of auxiliary variables are well known. Lahiri (Bull Int Stat Inst 33:133–140, 1951) considered a sampling design proportionate to a sample mean of an auxiliary variable. Sing and Srivastava (Biometrika 67(1):205–209, 1980) proposed the sampling design proportionate to a sample variance while Wywiał (J Indian Stat Assoc 37:73–87, 1999) a sampling design proportionate to a sample generalized variance of auxiliary variables. Some other sampling designs dependent on moments of an auxiliary variable were considered e.g. in Wywiał (Some contributions to multivariate methods in, survey sampling. Katowice University of Economics, Katowice, 2003a); Stat Transit 4(5):779–798, 2000) where accuracy of some sampling strategies were compared, too.These sampling designs cannot be useful in the case when there are some censored observations of the auxiliary variable. Moreover, they can be much too sensitive to outliers observations. In these cases the sampling design proportionate to the order statistic of an auxiliary variable can be more useful. That is why such an unequal probability sampling design is proposed here. Its particular cases as well as its conditional version are considered, too. The sampling scheme implementing this sampling design is proposed. The inclusion probabilities of the first and second orders were evaluated. The well known Horvitz–Thompson estimator is taken into account. A ratio estimator dependent on an order statistic is constructed. It is similar to the well known ratio estimator based on the population and sample means. Moreover, it is an unbiased estimator of the population mean when the sample is drawn according to the proposed sampling design dependent on the appropriate order statistic.  相似文献   

13.
In this study, we define the Horvitz-Thompson estimator of the population mean using the inclusion probabilities of a ranked set sample in a finite population setting. The second-order inclusion probabilities that are required to calculate the variance of the Horvitz-Thompson estimator were obtained. The Horvitz-Thompson estimator, using the inclusion probabilities of ranked set sample, tends to be more efficient than the classical ranked set sampling estimator especially in a positively skewed population with small sizes. Also, we present a real data example with the volatility of gasoline to illustrate the Horvitz-Thompson estimator based on ranked set sampling.  相似文献   

14.
Bayesian hierarchical formulations are utilized by the U.S. Bureau of Labor Statistics (BLS) with respondent‐level data for missing item imputation because these formulations are readily parameterized to capture correlation structures. BLS collects survey data under informative sampling designs that assign probabilities of inclusion to be correlated with the response on which sampling‐weighted pseudo posterior distributions are estimated for asymptotically unbiased inference about population model parameters. Computation is expensive and does not support BLS production schedules. We propose a new method to scale the computation that divides the data into smaller subsets, estimates a sampling‐weighted pseudo posterior distribution, in parallel, for every subset and combines the pseudo posterior parameter samples from all the subsets through their mean in the Wasserstein space of order 2. We construct conditions on a class of sampling designs where posterior consistency of the proposed method is achieved. We demonstrate on both synthetic data and in application to the Current Employment Statistics survey that our method produces results of similar accuracy as the usual approach while offering substantially faster computation.  相似文献   

15.
A means for utilizing auxiliary information in surveys is to sample with inclusion probabilities proportional to given size values, to use a πps design, preferably with fixed sample size. A novel candidate in that context is Pareto πps. This sampling scheme was derived by limit considerations and it works with a degree of approximation for finite samples. Desired and factual inclusion probabilities do not agree exactly, which in turn leads to some estimator bias. The central topic in this paper is to derive conditions for the bias to be negligible.Practically useful information on small sample behavior of Pareto πps can, to the best of our understanding, be gained only by numerical studies. Earlier investigations to that end have been too limited to allow general conclusions, while this paper reports on findings from an extensive numerical study. The chief conclusion is that the estimator bias is negligible in almost all situations met in survey practice.  相似文献   

16.
Two new sampling schemes namely, Star-Type Systematic (STS) sampling without replacement and Modified Star-Type Systematic (MSTS) sampling without replacement for estimation of finite population means are introduced. The relative performances of the proposed star-type systematic sample means along with those of the simple random and systematic sample means are assessed for a hypothetical population with a linear trend and also for certain natural populations. Furthermore, the usefulness of the proposed sampling schemes in quality control and for constructing partial diallel crosses in mating designs are briefly break discussed.  相似文献   

17.
Summary. Inflation-type weighted estimators for variance components can be badly biased. Modified weighted estimators suggested in the literature are also badly biased for certain sampling designs. We propose new estimators for variance components, some of which are approximately unbiased regardless of the sampling design. These estimators require knowledge of the joint inclusion probabilities of the observations. The small sample properties of the estimators are studied via simulation for the simple one-way random-effects model. An application is given by using data from the US Hispanic Health and Nutrition Examination Survey.  相似文献   

18.
Modeling survey data often requires having the knowledge of design and weighting variables. With public-use survey data, some of these variables may not be available for confidentiality reasons. The proposed approach can be used in this situation, as long as calibrated weights and variables specifying the strata and primary sampling units are available. It gives consistent point estimation and a pivotal statistics for testing and confidence intervals. The proposed approach does not rely on with-replacement sampling, single-stage, negligible sampling fractions, or noninformative sampling. Adjustments based on design effects, eigenvalues, joint-inclusion probabilities or bootstrap, are not needed. The inclusion probabilities and auxiliary variables do not have to be known. Multistage designs with unequal selection of primary sampling units are considered. Nonresponse can be easily accommodated if the calibrated weights include reweighting adjustment for nonresponse. We use an unconditional approach, where the variables and sample are random variables. The design can be informative.  相似文献   

19.
We propose a randomized minima–maxima nomination (RMMN) sampling design for use in finite populations. We derive the first- and second-order inclusion probabilities for both with and without replacement variations of the design. The inclusion probabilities for the without replacement variation are derived using a non-homogeneous Markov process. The design is simple to implement and results in simple and easy to calculate estimators and variances. It generalizes maxima nomination sampling for use in finite populations and includes some other sampling designs as special cases. We provide some optimality results and show that, in the context of finite population sampling, maxima nomination sampling is not generally the optimum design to follow. We also show, through numerical examples and a case study, that the proposed design can result in significant improvements in efficiency compared to simple random sampling without replacement designs for a wide choice of population types. Finally, we describe a bootstrap method for choosing values of the design parameters.  相似文献   

20.
In some applications it is cost efficient to sample data in two or more stages. In the first stage a simple random sample is drawn and then stratified according to some easily measured attribute. In each subsequent stage a random subset of previously selected units is sampled for more detailed and costly observation, with a unit's sampling probability determined by its attributes as observed in the previous stages. This paper describes multistage sampling designs and estimating equations based on the resulting data. Maximum likelihood estimates (MLEs) and their asymptotic variances are given for designs using parametric models. Horvitz–Thompson estimates are introduced as alternatives to MLEs, their asymptotic distributions are derived and their strengths and weaknesses are evaluated. The designs and the estimates are illustrated with data on corn production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号