首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
Abstract.  Much recent methodological progress in the analysis of infectious disease data has been due to Markov chain Monte Carlo (MCMC) methodology. In this paper, it is illustrated that rejection sampling can also be applied to a family of inference problems in the context of epidemic models, avoiding the issues of convergence associated with MCMC methods. Specifically, we consider models for epidemic data arising from a population divided into households. The models allow individuals to be potentially infected both from outside and from within the household. We develop methodology for selection between competing models via the computation of Bayes factors. We also demonstrate how an initial sample can be used to adjust the algorithm and improve efficiency. The data are assumed to consist of the final numbers ultimately infected within a sample of households in some community. The methods are applied to data taken from outbreaks of influenza.  相似文献   

2.
The analysis of infectious disease data presents challenges arising from the dependence in the data and the fact that only part of the transmission process is observable. These difficulties are usually overcome by making simplifying assumptions. The paper explores the use of Markov chain Monte Carlo (MCMC) methods for the analysis of infectious disease data, with the hope that they will permit analyses to be made under more realistic assumptions. Two important kinds of data sets are considered, containing temporal and non-temporal information, from outbreaks of measles and influenza. Stochastic epidemic models are used to describe the processes that generate the data. MCMC methods are then employed to perform inference in a Bayesian context for the model parameters. The MCMC methods used include standard algorithms, such as the Metropolis–Hastings algorithm and the Gibbs sampler, as well as a new method that involves likelihood approximation. It is found that standard algorithms perform well in some situations but can exhibit serious convergence difficulties in others. The inferences that we obtain are in broad agreement with estimates obtained by other methods where they are available. However, we can also provide inferences for parameters which have not been reported in previous analyses.  相似文献   

3.
A class of individual-level models (ILMs) outlined by R. Deardon et al., [Inference for individual level models of infectious diseases in large populations, Statist. Sin. 20 (2010), pp. 239–261] can be used to model the spread of infectious diseases in discrete time. The key feature of these ILMs is that they take into account covariate information on susceptible and infectious individuals as well as shared covariate information such as geography or contact measures. Here, such ILMs are fitted in a Bayesian framework using Markov chain Monte Carlo techniques to data sets from two studies on influenza transmission within households in Hong Kong during 2008 to 2009 and 2009 to 2010. The focus of this paper is to estimate the effect of vaccination on infection risk and choose a model that best fits the infection data.  相似文献   

4.
Abstract. In this article, we estimate the parameters of a simple random network and a stochastic epidemic on that network using data consisting of recovery times of infected hosts. The SEIR epidemic model we fit has exponentially distributed transmission times with Gamma distributed exposed and infectious periods on a network where every edge exists with the same probability, independent of other edges. We employ a Bayesian framework and Markov chain Monte Carlo (MCMC) integration to make estimates of the joint posterior distribution of the model parameters. We discuss the accuracy of the parameter estimates under various prior assumptions and show that it is possible in many scientifically interesting cases to accurately recover the parameters. We demonstrate our approach by studying a measles outbreak in Hagelloch, Germany, in 1861 consisting of 188 affected individuals. We provide an R package to carry out these analyses, which is available publicly on the Comprehensive R Archive Network.  相似文献   

5.
The design of infectious disease studies has received little attention because they are generally viewed as observational studies. That is, epidemic and endemic disease transmission happens and we observe it. We argue here that statistical design often provides useful guidance for such studies with regard to type of data and the size of the data set to be collected. It is shown that data on disease transmission in part of the community enables the estimation of central parameters and it is possible to compute the sample size required to make inferences with a desired precision. We illustrate this for data on disease transmission in a single community of uniformly mixing individuals and for data on outbreak sizes in households. Data on disease transmission is usually incomplete and this creates an identifiability problem for certain parameters of multitype epidemic models. We identify designs that can overcome this problem for the important objective of estimating parameters that help to assess the effectiveness of a vaccine. With disease transmission in animal groups there is greater scope for conducting planned experiments and we explore some possibilities for such experiments. The topic is largely unexplored and numerous open research problems in the area of statistical design of infectious disease data are mentioned.  相似文献   

6.
The paper proposes a method of analysis for data on within–household disease transmission, when only outbreak sizes are available. The method assumes between–household heterogeneity of the transmission probabilities. A random effects model in a hierarchical setting is fitted using MCMC and data augmentation techniques. The procedure is illustrated on a measles dataset.  相似文献   

7.
Summary.  The paper extends the susceptible–exposed–infective–removed model to handle heterogeneity introduced by spatially arranged populations, biologically plausible distributional assumptions and incorporation of observations from additional diagnostic tests. These extensions are motivated by a desire to analyse disease transmission experiments in a more detailed fashion than before. Such experiments are performed by veterinarians to gain knowledge about the dynamics of an infectious disease. By fitting our spatial susceptible–exposed–infective–removed with diagnostic testing model to data for a specific disease and production environment a valuable decision support tool is obtained, e.g. when evaluating on-farm control measures. Partial observability of the epidemic process is an inherent problem when trying to estimate model parameters from experimental data. We therefore extend existing work on Markov chain Monte Carlo estimation in partially observable epidemics to the multitype epidemic set-up of our model. Throughout the paper, data from a Belgian classical swine fever virus transmission experiment are used as a motivating example.  相似文献   

8.
Markov chain Monte Carlo (MCMC) algorithms have been shown to be useful for estimation of complex item response theory (IRT) models. Although an MCMC algorithm can be very useful, it also requires care in use and interpretation of results. In particular, MCMC algorithms generally make extensive use of priors on model parameters. In this paper, MCMC estimation is illustrated using a simple mixture IRT model, a mixture Rasch model (MRM), to demonstrate how the algorithm operates and how results may be affected by some commonly used priors. Priors on the probabilities of mixtures, label switching, model selection, metric anchoring, and implementation of the MCMC algorithm using WinBUGS are described, and their effects illustrated on parameter recovery in practical testing situations. In addition, an example is presented in which an MRM is fitted to a set of educational test data using the MCMC algorithm and a comparison is illustrated with results from three existing maximum likelihood estimation methods.  相似文献   

9.
Data augmentation is required for the implementation of many Markov chain Monte Carlo (MCMC) algorithms. The inclusion of augmented data can often lead to conditional distributions from well‐known probability distributions for some of the parameters in the model. In such cases, collapsing (integrating out parameters) has been shown to improve the performance of MCMC algorithms. We show how integrating out the infection rate parameter in epidemic models leads to efficient MCMC algorithms for two very different epidemic scenarios, final outcome data from a multitype SIR epidemic and longitudinal data from a spatial SI epidemic. The resulting MCMC algorithms give fresh insight into real‐life epidemic data sets.  相似文献   

10.
Considerable progress has been made in applying Markov chain Monte Carlo (MCMC) methods to the analysis of epidemic data. However, this likelihood based method can be inefficient due to the limited data available concerning an epidemic outbreak. This paper considers an alternative approach to studying epidemic data using Approximate Bayesian Computation (ABC) methodology. ABC is a simulation-based technique for obtaining an approximate sample from the posterior distribution of the parameters of the model and in an epidemic context is very easy to implement. A new approach to ABC is introduced which generates a set of values from the (approximate) posterior distribution of the parameters during each simulation rather than a single value. This is based upon coupling simulations with different sets of parameters and we call the resulting algorithm coupled ABC. The new methodology is used to analyse final size data for epidemics amongst communities partitioned into households. It is shown that for the epidemic data sets coupled ABC is more efficient than ABC and MCMC-ABC.  相似文献   

11.
Malaria is a parasitic infectious tropical disease that causes high mortality rates in the tropical belt. In Venezuela, Sucre state is considered the third state with most disease prevalence. This paper presents a hierarchical regression log-Poisson space-time model within a Bayesian approach to represent the incidence of malaria in Sucre state, Venezuela, during the period 1990–2002 in 15 municipalities of the state. Several additive models for the logarithm of the relative risk of the disease for each district were considered. These models differ in their structure by including different combinations of social-economic and climatic covariates in a multiple regression term. A random effect that captures the spatial heterogeneity in the study region, and a CAR (Conditionally Autoregressive) component that recognizes the effect of nearby municipalities in the transmission of the disease each year, are also included in the model. A simpler version without including the CAR component was also fitted to the data. Model estimation and predictive inference was carried out through the implementation of a computer code in the WinBUGS software, which makes use of Markov Chain Monte Carlo (MCMC) methods. For model selection the criterion of minimum posterior predictive loss (D) was used. The Moran I statistic was calculated to test the independence of the residuals of the resulting model. Finally, we verify the model fit by using the Bayesian p-value, and in most cases the selected model captures the spatial structure of the relative risks among the neighboring municipalities each year. For years with a poor model fit, the t-Student distribution is used as an alternative model for the spatial local random effect with better fit to the tail behavior of the data probability distribution.  相似文献   

12.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

13.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically, in this article we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with a prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between models with different numbers of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split–merge proposals to improve the performance of the MCMC algorithm. We apply our proposed algorithms to simulated data as well as a real-data example, and the results demonstrate the desired performance of the new sampler.  相似文献   

14.
For many stochastic models, it is difficult to make inference about the model parameters because it is impossible to write down a tractable likelihood given the observed data. A common solution is data augmentation in a Markov chain Monte Carlo (MCMC) framework. However, there are statistical problems where this approach has proved infeasible but where simulation from the model is straightforward leading to the popularity of the approximate Bayesian computation algorithm. We introduce a forward simulation MCMC (fsMCMC) algorithm, which is primarily based upon simulation from the model. The fsMCMC algorithm formulates the simulation of the process explicitly as a data augmentation problem. By exploiting non‐centred parameterizations, an efficient MCMC updating schema for the parameters and augmented data is introduced, whilst maintaining straightforward simulation from the model. The fsMCMC algorithm is successfully applied to two distinct epidemic models including a birth–death–mutation model that has only previously been analysed using approximate Bayesian computation methods.  相似文献   

15.
The spread of an emerging infectious disease is a major public health threat. Given the uncertainties associated with vector-borne diseases, in terms of vector dynamics and disease transmission, it is critical to develop statistical models that address how and when such an infectious disease could spread throughout a region such as the USA. This paper considers a spatio-temporal statistical model for how an infectious disease could be carried into the USA by migratory waterfowl vectors during their seasonal migration and, ultimately, the risk of transmission of such a disease to domestic fowl. Modeling spatio-temporal data of this type is inherently difficult given the uncertainty associated with observations, complexity of the dynamics, high dimensionality of the underlying process, and the presence of excessive zeros. In particular, the spatio-temporal dynamics of the waterfowl migration are developed by way of a two-tiered functional temporal and spatial dimension reduction procedure that captures spatial and seasonal trends, as well as regional dynamics. Furthermore, the model relates the migration to a population of poultry farms that are known to be susceptible to such diseases, and is one of the possible avenues toward transmission to domestic poultry and humans. The result is a predictive distribution of those counties containing poultry farms that are at the greatest risk of having the infectious disease infiltrate their flocks assuming that the migratory population was infected. The model naturally fits into the hierarchical Bayesian framework.  相似文献   

16.
We consider Bayesian analysis of threshold autoregressive moving average model with exogenous inputs (TARMAX). In order to obtain the desired marginal posterior distributions of all parameters including the threshold value of the two-regime TARMAX model, we use two different Markov chain Monte Carlo (MCMC) methods to apply Gibbs sampler with Metropolis-Hastings algorithm. The first one is used to obtain iterative least squares estimates of the parameters. The second one includes two MCMC stages for estimate the desired marginal posterior distributions and the parameters. Simulation experiments and a real data example show support to our approaches.  相似文献   

17.
The unknown or unobservable risk factors in the survival analysis cause heterogeneity between individuals. Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times, the shared frailty models were suggested. The most common shared frailty model is a model in which frailty act multiplicatively on the hazard function. In this paper, we introduce the shared gamma frailty model and the inverse Gaussian frailty model with the reversed hazard rate. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.  相似文献   

18.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in the individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data), the shared frailty models were suggested. In this article, we introduce the shared gamma frailty models with the reversed hazard rate. We develop the Bayesian estimation procedure using the Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We apply the model to a real life bivariate survival dataset.  相似文献   

19.
Abstract

In this article, we have considered three different shared frailty models under the assumption of generalized Pareto Distribution as baseline distribution. Frailty models have been used in the survival analysis to account for the unobserved heterogeneity in an individual risks to disease and death. These three frailty models are with gamma frailty, inverse Gaussian frailty and positive stable frailty. Then we introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters. We applied these three models to a kidney infection data and find the best fitted model for kidney infection data. We present a simulation study to compare true value of the parameters with the estimated values. Model comparison is made using Bayesian model selection criterion and a well-fitted model is suggested for the kidney infection data.  相似文献   

20.
We compare results for stochastic volatility models where the underlying volatility process having generalized inverse Gaussian (GIG) and tempered stable marginal laws. We use a continuous time stochastic volatility model where the volatility follows an Ornstein–Uhlenbeck stochastic differential equation driven by a Lévy process. A model for long-range dependence is also considered, its merit and practical relevance discussed. We find that the full GIG and a special case, the inverse gamma, marginal distributions accurately fit real data. Inference is carried out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We develop an MCMC algorithm that can be used for a general marginal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号