首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Most applications in spatial statistics involve modeling of complex spatial–temporal dependency structures, and many of the problems of space and time modeling can be overcome by using separable processes. This subclass of spatial–temporal processes has several advantages, including rapid fitting and simple extensions of many techniques developed and successfully used in time series and classical geostatistics. In particular, a major advantage of these processes is that the covariance matrix for a realization can be expressed as the Kronecker product of two smaller matrices that arise separately from the temporal and purely spatial processes, and hence its determinant and inverse are easily determinable. However, these separable models are not always realistic, and there are no formal tests for separability of general spatial–temporal processes. We present here a formal method to test for separability. Our approach can be also used to test for lack of stationarity of the process. The beauty of our approach is that by using spectral methods the mechanics of the test can be reduced to a simple two-factor analysis of variance (ANOVA) procedure. The approach we propose is based on only one realization of the spatial–temporal process.We apply the statistical methods proposed here to test for separability and stationarity of spatial–temporal ozone fields using data provided by the US Environmental Protection Agency (EPA).  相似文献   

2.
Max-stable processes have proved to be useful for the statistical modeling of spatial extremes. For statistical inference it is often assumed that there is no temporal dependence; i.e., that the observations at spatial locations are independent in time. In a first approach we construct max-stable space–time processes as limits of rescaled pointwise maxima of independent Gaussian processes, where the space–time covariance functions satisfy weak regularity conditions. This leads to so-called Brown–Resnick processes. In a second approach, we extend Smith’s storm profile model to a space–time setting. We provide explicit expressions for the bivariate distribution functions, which are equal under appropriate choice of the parameters. We also show how the space–time covariance function of the underlying Gaussian process can be interpreted in terms of the tail dependence function in the limiting max-stable space–time process.  相似文献   

3.
We consider the problem of estimating the parameters of the covariance function of a stationary spatial random process. In spatial statistics, there are widely used parametric forms for the covariance functions, and various methods for estimating the parameters have been proposed in the literature. We develop a method for estimating the parameters of the covariance function that is based on a regression approach. Our method utilizes pairs of observations whose distances are closest to a value h>0h>0 which is chosen in a way that the estimated correlation at distance h is a predetermined value. We demonstrate the effectiveness of our procedure by simulation studies and an application to a water pH data set. Simulation studies show that our method outperforms all well-known least squares-based approaches to the variogram estimation and is comparable to the maximum likelihood estimation of the parameters of the covariance function. We also show that under a mixing condition on the random field, the proposed estimator is consistent for standard one parameter models for stationary correlation functions.  相似文献   

4.
Abstract. In this article, we propose a new parametric family of models for real‐valued spatio‐temporal stochastic processes S ( x , t ) and show how low‐rank approximations can be used to overcome the computational problems that arise in fitting the proposed class of models to large datasets. Separable covariance models, in which the spatio‐temporal covariance function of S ( x , t ) factorizes into a product of purely spatial and purely temporal functions, are often used as a convenient working assumption but are too inflexible to cover the range of covariance structures encountered in applications. We define positive and negative non‐separability and show that in our proposed family we can capture positive, zero and negative non‐separability by varying the value of a single parameter.  相似文献   

5.
Longitudinal imaging studies have moved to the forefront of medical research due to their ability to characterize spatio-temporal features of biological structures across the lifespan. Valid inference in longitudinal imaging requires enough flexibility of the covariance model to allow reasonable fidelity to the true pattern. On the other hand, the existence of computable estimates demands a parsimonious parameterization of the covariance structure. Separable (Kronecker product) covariance models provide one such parameterization in which the spatial and temporal covariances are modeled separately. However, evaluating the validity of this parameterization in high dimensions remains a challenge. Here we provide a scientifically informed approach to assessing the adequacy of separable (Kronecker product) covariance models when the number of observations is large relative to the number of independent sampling units (sample size). We address both the general case, in which unstructured matrices are considered for each covariance model, and the structured case, which assumes a particular structure for each model. For the structured case, we focus on the situation where the within-subject correlation is believed to decrease exponentially in time and space as is common in longitudinal imaging studies. However, the provided framework equally applies to all covariance patterns used within the more general multivariate repeated measures context. Our approach provides useful guidance for high dimension, low-sample size data that preclude using standard likelihood-based tests. Longitudinal medical imaging data of caudate morphology in schizophrenia illustrate the approaches appeal.  相似文献   

6.
Separable spatio-temporal covariance models, defined as the product of purely spatial and purely temporal covariance functions, are often used in practice, but frequently they only represent a convenient assumption. On the other hand, non-separable models are receiving a lot of attention, since they are more flexible to handle empirical covariances showed up in applications. Different forms of non-separability for space–time covariance functions have been recently defined in the literature. In this paper, the notion of positive and negative non-separability is further formalized in order to distinguish between pointwise and uniform non-separability. Various well-known non-separable space–time stationary covariance models are analyzed and classified by using the new definition of non-separability. In particular, wide classes of non-separable spatio-temporal covariance functions, able to capture positive and negative non-separability, are proposed and some examples of these classes are given. General results concerning the non-separability of spatial–temporal covariance functions obtained by a linear combination of spatial–temporal covariance functions and some stability properties are also presented. These results can be helpful to generate as well as to select appropriate covariance models for describing space–time data.  相似文献   

7.
Abstract: The authors consider a class of models for spatio‐temporal processes based on convolving independent processes with a discrete kernel that is represented by a lower triangular matrix. They study two families of models. In the first one, spatial Gaussian processes with isotropic correlations are convoluted with a kernel that provides temporal dependencies. In the second family, AR(p) processes are convoluted with a kernel providing spatial interactions. The covariance structures associated with these two families are quite rich. Their covariance functions that are stationary and separable in space and time as well as time dependent nonseparable and nonisotropic ones.  相似文献   

8.
Summary.  We consider non-stationary spatiotemporal modelling in an investigation into karst water levels in western Hungary. A strong feature of the data set is the extraction of large amounts of water from mines, which caused the water levels to reduce until about 1990 when the mining ceased, and then the levels increased quickly. We discuss some traditional hydrogeological models which might be considered to be appropriate for this situation, and various alternative stochastic models. In particular, a separable space–time covariance model is proposed which is then deformed in time to account for the non-stationary nature of the lagged correlations between sites. Suitable covariance functions are investigated and then the models are fitted by using weighted least squares and cross-validation. Forecasting and prediction are carried out by using spatiotemporal kriging. We assess the performance of the method with one-step-ahead forecasting and make comparisons with naïve estimators. We also consider spatiotemporal prediction at a set of new sites. The new model performs favourably compared with the deterministic model and the naïve estimators, and the deformation by time shifting is worthwhile.  相似文献   

9.
Abstract. In geophysical and environmental problems, it is common to have multiple variables of interest measured at the same location and time. These multiple variables typically have dependence over space (and/or time). As a consequence, there is a growing interest in developing models for multivariate spatial processes, in particular, the cross‐covariance models. On the other hand, many data sets these days cover a large portion of the Earth such as satellite data, which require valid covariance models on a globe. We present a class of parametric covariance models for multivariate processes on a globe. The covariance models are flexible in capturing non‐stationarity in the data yet computationally feasible and require moderate numbers of parameters. We apply our covariance model to surface temperature and precipitation data from an NCAR climate model output. We compare our model to the multivariate version of the Matérn cross‐covariance function and models based on coregionalization and demonstrate the superior performance of our model in terms of AIC (and/or maximum loglikelihood values) and predictive skill. We also present some challenges in modelling the cross‐covariance structure of the temperature and precipitation data. Based on the fitted results using full data, we give the estimated cross‐correlation structure between the two variables.  相似文献   

10.
There is by now a substantial literature on spatio-temporal modeling. However, to date, there exists essentially no literature which addresses the issue of process change from a certain time. In fact, if we look at change points for purely time series data, the customary form is to propose a model involving a mean or level shift. We see little attempting to capture a change in association structure. Part of the concern is how to specify flexible ways to bridge the association across the time point and still ensure that a proper joint distribution has been defined for all of the data. Introducing a spatial component evidently adds further complication. We want to allow for a change-point reflecting change in both temporal and spatial association. In this paper we propose a constructive, flexible model formulation through additive specifications. We also demonstrate how computational concerns benefit from the availability of temporal order. Finally, we illustrate with several simulated datasets to examine the capability of the model to detect different types of structural changes.  相似文献   

11.
Abstract.  This paper considers the problem of mapping spatial variation of yield in a field using data from a yield monitoring system on a combine harvester. The unobserved yield is assumed to be a Gaussian random field and the yield monitoring system data is modelled as a convolution of the yield and an impulse response function. This results in an unusual spatial covariance structure (depending on the driving pattern of the combine harvester) for the yield monitoring system data. Parameters of the impulse response function and the spatial covariance function of the yield are estimated using maximum likelihood methods. The fitted model is assessed using certain empirical directional covariograms and the yield is finally predicted using the inferred statistical model.  相似文献   

12.
This paper focuses on the analysis of spatially correlated functional data. We propose a parametric model for spatial correlation and the between-curve correlation is modeled by correlating functional principal component scores of the functional data. Additionally, in the sparse observation framework, we propose a novel approach of spatial principal analysis by conditional expectation to explicitly estimate spatial correlations and reconstruct individual curves. Assuming spatial stationarity, empirical spatial correlations are calculated as the ratio of eigenvalues of the smoothed covariance surface Cov\((X_i(s),X_i(t))\) and cross-covariance surface Cov\((X_i(s), X_j(t))\) at locations indexed by i and j. Then a anisotropy Matérn spatial correlation model is fitted to empirical correlations. Finally, principal component scores are estimated to reconstruct the sparsely observed curves. This framework can naturally accommodate arbitrary covariance structures, but there is an enormous reduction in computation if one can assume the separability of temporal and spatial components. We demonstrate the consistency of our estimates and propose hypothesis tests to examine the separability as well as the isotropy effect of spatial correlation. Using simulation studies, we show that these methods have some clear advantages over existing methods of curve reconstruction and estimation of model parameters.  相似文献   

13.
Although positive definiteness is a sufficient condition for a function to be a covariance, the stronger strict positive definiteness is important for many applications, especially in spatial statistics, since it ensures that the kriging equations have a unique solution. In particular, spatial-temporal prediction has received a lot of attention, hence strictly positive definite spatial-temporal covariance models (or equivalently strictly conditionally negative definite variogram models) are needed.In this paper the necessary and sufficient condition for the product and the product-sum space-time covariance models to be strictly positive definite (or the variogram function to be strictly conditionally negative definite) is given. In addition it is shown that an example appeared in the recent literature which purports to show that product-sum covariance functions may be only semi-definite is itself invalid. Strict positive definiteness of the sum of products model is also discussed.  相似文献   

14.
Abstract

Few guidelines exist for the application of geostatistical methods to spatial counts and the prediction to unsampled areas is an important aspect of experimental field research. The prediction performances of kriging and a correlated errors Poisson model are compared through simulation. Counts with a known spatial covariance structure are generated in an investigation involving several factors: area size, overall mean, range of correlation, spatial covariance function, and the presence of trend. The correlated errors Poisson model generally gives superior prediction performance when an exponential covariance structure is used.  相似文献   

15.
There has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process, and derive the conditional Laplace transform of the FIWSV model in order to obtain a closed form expression of moments. A two-step procedure is used, namely estimating the parameter of fractional integration via the local Whittle estimator in the first step, and estimating the remaining parameters via the generalized method of moments in the second step. Monte Carlo results for the procedure show a reasonable performance in finite samples. The empirical results for the S&P 500 and FTSE 100 indexes show that the data favor the new FIWSV process rather than the one-factor and two-factor models of the Wishart autoregressive process for the covariance structure.  相似文献   

16.
We establish weak and strong posterior consistency of Gaussian process priors studied by Lenk [1988. The logistic normal distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83 (402), 509–516] for density estimation. Weak consistency is related to the support of a Gaussian process in the sup-norm topology which is explicitly identified for many covariance kernels. In fact we show that this support is the space of all continuous functions when the usual covariance kernels are chosen and an appropriate prior is used on the smoothing parameters of the covariance kernel. We then show that a large class of Gaussian process priors achieve weak as well as strong posterior consistency (under some regularity conditions) at true densities that are either continuous or piecewise continuous.  相似文献   

17.
Summary.  When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. We develop a graphical model for sequences of Gaussian random vectors when changes in the underlying graph occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph and the time variation thereof.  相似文献   

18.
In this paper, we derive an exact formula for the covariance of two innovations computed from a spatial Gibbs point process and suggest a fast method for estimating this covariance. We show how this methodology can be used to estimate the asymptotic covariance matrix of the maximum pseudo‐likelihood estimator of the parameters of a spatial Gibbs point process model. This allows us to construct asymptotic confidence intervals for the parameters. We illustrate the efficiency of our procedure in a simulation study for several classical parametric models. The procedure is implemented in the statistical software R , and it is included in spatstat , which is an R package for analyzing spatial point patterns.  相似文献   

19.
ABSTRACT.  Product quality in the paper-making industry can be assessed by opacity of a linear trace through continuous production sheets, summarized in spectral form. We adopt a class of non-Gaussian stochastic models for continuous spatial variation to describe data of this type. The model has flexible covariance structure, physically interpretable parameters and allows several scales of variation for the underlying process. We derive the spectral properties of the model, and develop methods of parameter estimation based on maximum likelihood in the frequency domain. The methods are illustrated using sample data from a UK mill.  相似文献   

20.
This work proposes a non stationary random field model to describe the spatial variability of housing prices that are affected by a localized externality. The model allows for the effect of the localized externality on house prices to be represented in the mean function and/or the covariance function of the random field. The correlation function of the proposed model is a mixture of an isotropic correlation function and a correlation function that depends on the distances between home sales and the localized externality. The model is fit using a Bayesian approach via a Markov chain Monte Carlo algorithm. A dataset of 437 single family home sales during 2001 in the city of Cedar Falls, Iowa, is used to illustrate the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号