首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The standardized hazard ratio for univariate proportional hazards regression is generalized as a scalar to multivariate proportional hazards regression. Estimators of the standardized log hazard ratio are developed, with corrections for bias and for regression to the mean in high-dimensional analyses. Tests of point and interval null hypotheses and confidence intervals are constructed. Cohort sampling study designs, commonly used in prospective–retrospective clinical genomic studies, are accommodated.  相似文献   

2.
This continuing education course for professionals involved in all areas of clinical trials integrates concepts related to the role of randomization in the scientific process. The course includes two interactive lecture and discussion sections and a workshop practicum. The first interactive lecture introduces basic clinical trial issues and statistical principles such as bias, blinding, randomization, control groups, and the importance of formulating clear and discriminating clinical and statistical hypotheses. It then focuses on the most commonly used clinical study designs and the corresponding patient randomization schemes. The second interactive lecture focuses on the implementation of randomization of patients and drug supply through allocation and component ID schedules. The workshop practicum, conducted in small groups, enables students to apply the lecture concepts to real clinical studies. Flexibility was built into the workshop practicum materials to allow the course content to be customized to specific audiences, and the interactive lecture sessions can be stretched to cover more advanced topics according to class interest and time availability.  相似文献   

3.
For first‐time‐in‐human studies with small molecules alternating cross‐over designs are often employed and at study end are analyzed using linear models. We discuss the impact of including a period effect in the model on the precision with which dose level contrasts can be estimated and quantify the bias of least squares estimators if a period effect is inherent in the data that is not accounted for in the model. We also propose two alternative designs that allow a more precise estimation of dose level contrasts compared with the standard design when period effects are included in the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Crossover designs have some advantages over standard clinical trial designs and they are often used in trials evaluating the efficacy of treatments for infertility. However, clinical trials of infertility treatments violate a fundamental condition of crossover designs, because women who become pregnant in the first treatment period are not treated in the second period. In previous research, to deal with this problem, some new designs, such as re‐randomization designs, and analysis methods including the logistic mixture model and the beta‐binomial mixture model were proposed. Although the performance of these designs and methods has previously been evaluated in large‐scale clinical trials with sample sizes of more than 1000 per group, the actual sample sizes of infertility treatment trials are usually around 100 per group. The most appropriate design and analysis for these moderate‐scale clinical trials are currently unclear. In this study, we conducted simulation studies to determine the appropriate design and analysis method of moderate‐scale clinical trials for irreversible endpoints by evaluating the statistical power and bias in the treatment effect estimates. The Mantel–Haenszel method had similar power and bias to the logistic mixture model. The crossover designs had the highest power and the smallest bias. We recommend using a combination of the crossover design and the Mantel–Haenszel method for two‐period, two‐treatment clinical trials with irreversible endpoints. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Crossover designs are used often in clinical trials. It is not uncommon that subjects discontinue before completing all treatment periods in a crossover study. Despite availability of statistical methodologies utilizing all available data and software for obtaining valid inferences under the assumption of missing at random (MAR), naïve approaches, such as the complete case (CC) analysis, which is only valid with a strong assumption of missing completely at random are still widely used in practice. In this article, we obtain the analytical form of the estimation bias of treatment effects with CC for linear mixed models. We use simulation studies to examine the inflation of Type I error and efficiency loss in the inferences with CC under MAR. Invalidity and inefficiency of two other commonly used approaches for defining analyzed data in the presence of missing data, including data from at least two periods in three period crossover and available cases for a specific comparison of interest, are also demonstrated through simulation studies.  相似文献   

6.
Two‐stage designs are widely used to determine whether a clinical trial should be terminated early. In such trials, a maximum likelihood estimate is often adopted to describe the difference in efficacy between the experimental and reference treatments; however, this method is known to display conditional bias. To reduce such bias, a conditional mean‐adjusted estimator (CMAE) has been proposed, although the remaining bias may be nonnegligible when a trial is stopped for efficacy at the interim analysis. We propose a new estimator for adjusting the conditional bias of the treatment effect by extending the idea of the CMAE. This estimator is calculated by weighting the maximum likelihood estimate obtained at the interim analysis and the effect size prespecified when calculating the sample size. We evaluate the performance of the proposed estimator through analytical and simulation studies in various settings in which a trial is stopped for efficacy or futility at the interim analysis. We find that the conditional bias of the proposed estimator is smaller than that of the CMAE when the information time at the interim analysis is small. In addition, the mean‐squared error of the proposed estimator is also smaller than that of the CMAE. In conclusion, we recommend the use of the proposed estimator for trials that are terminated early for efficacy or futility.  相似文献   

7.
The term 'representation bias' is used to describe the disparities that exist between treatment effects estimated from field experiments, and those effects that would be seen if treatments were used in the field. In this paper we are specifically concerned with representation bias caused by disease inoculum travelling between plots, or out of the experimental area altogether. The scope for such bias is maximized in the case of airborne spread diseases. This paper extends the work of Deardon et al. (2004), using simulation methods to explore the relationship between design and representation bias. In doing so, we illustrate the importance of plot size and spacing, as well as treatment-to-plot allocation. We examine a novel class of designs, incomplete column designs, to develop an understanding of the mechanisms behind representation bias. We also introduce general methods of designing field trials, which can be used to limit representation bias by carefully controlling treatment to block allocation in both incomplete column and incomplete randomized block designs. Finally, we show how the commonly used practice of sampling from the centres of plots, rather than entire plots, can also help to control representation bias.  相似文献   

8.
Optimal experimental design for estimation of the hemodynamic response function (HRF) is investigated using a nonlinear model with a quadratic mean squared error design criterion. This criterion is used, along with a genetic algorithm, to select locally optimal designs that are shown to be, in most cases, more efficient than designs selected with the more commonly used linear expansion criterion. These designs are also shown to result in lower overall asymptotic estimator variance and bias. The investigation focuses on a single stimulus type, but the criterion can also be used with multiple stimulus types.  相似文献   

9.
Inference for a generalized linear model is generally performed using asymptotic approximations for the bias and the covariance matrix of the parameter estimators. For small experiments, these approximations can be poor and result in estimators with considerable bias. We investigate the properties of designs for small experiments when the response is described by a simple logistic regression model and parameter estimators are to be obtained by the maximum penalized likelihood method of Firth [Firth, D., 1993, Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38]. Although this method achieves a reduction in bias, we illustrate that the remaining bias may be substantial for small experiments, and propose minimization of the integrated mean square error, based on Firth's estimates, as a suitable criterion for design selection. This approach is used to find locally optimal designs for two support points.  相似文献   

10.
Crossover designs are commonly used in bioequivalence studies. However, the results can be affected by some outlying observations, which may lead to the wrong decision on bioequivalence. Therefore, it is essential to investigate the influence of aberrant observations. Chow and Tse in 1990 discussed this issue by considering the methods based on the likelihood distance and estimates distance. Perturbation theory provides a useful tool for the sensitivity analysis on statistical models. Hence, in this paper, we develop the influence functions via the perturbation scheme proposed by Hampel as an alternative approach on the influence analysis for a crossover design experiment. Moreover, the comparisons between the proposed approach and the method proposed by Chow and Tse are investigated. Two real data examples are provided to illustrate the results of these approaches. Our proposed influence functions show excellent performance on the identification of outlier/influential observations and are suitable for use with small sample size crossover designs commonly used in bioequivalence studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The current guidelines, ICH E14, for the evaluation of non-antiarrhythmic compounds require a 'thorough' QT study (TQT) conducted during clinical development (ICH Guidance for Industry E14, 2005). Owing to the regulatory choice of margin (10 ms), the TQT studies must be conducted to rigorous standards to ensure that variability is minimized. Some of the key sources of variation can be controlled by use of randomization, crossover design, standardization of electrocardiogram (ECG) recording conditions and collection of replicate ECGs at each time point. However, one of the key factors in these studies is the baseline measurement, which if not controlled and consistent across studies could lead to significant misinterpretation. In this article, we examine three types of baseline methods widely used in the TQT studies to derive a change from baseline in QTc (time-matched, time-averaged and pre-dose-averaged baseline). We discuss the impact of the baseline values on the guidance-recommended 'largest time-matched' analyses. Using simulation we have shown the impact of these baseline approaches on the type I error and power for both crossover and parallel group designs. In this article, we show that the power of study decreases as the number of time points tested in TQT study increases. A time-matched baseline method is recommended by several authors (Drug Saf. 2005; 28(2):115-125, Health Canada guidance document: guide for the analysis and review of QT/QTc interval data, 2006) due to the existence of the circadian rhythm in QT. However, the impact of the time-matched baseline method on statistical inference and sample size should be considered carefully during the design of TQT study. The time-averaged baseline had the highest power in comparison with other baseline approaches.  相似文献   

12.
13.
Bayesian dynamic borrowing designs facilitate borrowing information from historical studies. Historical data, when perfectly commensurate with current data, have been shown to reduce the trial duration and the sample size, while inflation in the type I error and reduction in the power have been reported, when imperfectly commensurate. These results, however, were obtained without considering that Bayesian designs are calibrated to meet regulatory requirements in practice and even no‐borrowing designs may use information from historical data in the calibration. The implicit borrowing of historical data suggests that imperfectly commensurate historical data may similarly impact no‐borrowing designs negatively. We will provide a fair appraiser of Bayesian dynamic borrowing and no‐borrowing designs. We used a published selective adaptive randomization design and real clinical trial setting and conducted simulation studies under varying degrees of imperfectly commensurate historical control scenarios. The type I error was inflated under the null scenario of no intervention effect, while larger inflation was noted with borrowing. The larger inflation in type I error under the null setting can be offset by the greater probability to stop early correctly under the alternative. Response rates were estimated more precisely and the average sample size was smaller with borrowing. The expected increase in bias with borrowing was noted, but was negligible. Using Bayesian dynamic borrowing designs may improve trial efficiency by stopping trials early correctly and reducing trial length at the small cost of inflated type I error.  相似文献   

14.
Summary.  Efron's biased coin design is a well-known randomization technique that helps to neutralize selection bias in sequential clinical trials for comparing treatments, while keeping the experiment fairly balanced. Extensions of the biased coin design have been proposed by several researchers who have focused mainly on the large sample properties of their designs. We modify Efron's procedure by introducing an adjustable biased coin design, which is more flexible than his. We compare it with other existing coin designs; in terms of balance and lack of predictability, its performance for small samples appears in many cases to be an improvement with respect to the other sequential randomized allocation procedures.  相似文献   

15.
Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce.  相似文献   

16.
Background: Inferentially seamless studies are one of the best‐known adaptive trial designs. Statistical inference for these studies is a well‐studied problem. Regulatory guidance suggests that statistical issues associated with study conduct are not as well understood. Some of these issues are caused by the need for early pre‐specification of the phase III design and the absence of sponsor access to unblinded data. Before statisticians decide to choose a seamless IIb/III design for their programme, they should consider whether these pitfalls will be an issue for their programme. Methods: We consider four case studies. Each design met with varying degrees of success. We explore the reasons for this variation to identify characteristics of drug development programmes that lend themselves well to inferentially seamless trials and other characteristics that warn of difficulties. Results: Seamless studies require increased upfront investment and planning to enable the phase III design to be specified at the outset of phase II. Pivotal, inferentially seamless studies are unlikely to allow meaningful sponsor access to unblinded data before study completion. This limits a sponsor's ability to reflect new information in the phase III portion. Conclusions: When few clinical data have been gathered about a drug, phase II data will answer many unresolved questions. Committing to phase III plans and study designs before phase II begins introduces extra risk to drug development. However, seamless pivotal studies may be an attractive option when the clinical setting and development programme allow, for example, when revisiting dose selection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
If a model is fitted to empirical data, bias can arise from terms which are not incorporated in the model assumptions. As a consequence the commonly used optimality criteria based on the generalized variance of the estimator of the model parameters may not lead to efficient designs for the statistical analysis. In this note some general aspects of all-bias designs are presented, which were introduced in this context by Box and Draper (1959). Using an interesting correspondence between the points of all-bias designs and the knots of quadrature formulas we establish sufficient conditions such that a given design is an all-bias design. The results are illustrated in the special case of spline regression models. In particular our results generalize recent findings of Woods and Lewis (2006).  相似文献   

18.
Ten different estimators of the parameter in a limiting or serial dilution assay are compared. Eight of them are constructed to reduce the bias of the commonly used maximum likelihood estimator. Extensive Monte Carlo experiments using various designs, and practical considerations, suggest that a particular jackknife version of the maximum likelihood estimator is preferred, provided that the design is not too small.  相似文献   

19.
We consider the problem of the sequential choice of design points in an approximately linear model. It is assumed that the fitted linear model is only approximately correct, in that the true response function contains a nonrandom, unknown term orthogonal to the fitted response. We also assume that the parameters are estimated by M-estimation. The goal is to choose the next design point in such a way as to minimize the resulting integrated squared bias of the estimated response, to order n-1. Explicit applications to analysis of variance and regression are given. In a simulation study the sequential designs compare favourably with some fixed-sample-size designs which are optimal for the true response to which the sequential designs must adapt.  相似文献   

20.
There is a growing need for study designs that can evaluate efficacy and toxicity outcomes simultaneously in phase I or phase I/II cancer clinical trials. Many dose‐finding approaches have been proposed; however, most of these approaches assume binary efficacy and toxicity outcomes, such as dose‐limiting toxicity (DLT), and objective responses. DLTs are often defined for short time periods. In contrast, objective responses are often defined for longer periods because of practical limitations on confirmation and the criteria used to define ‘confirmation’. This means that studies have to be carried out for unacceptably long periods of time. Previous studies have not proposed a satisfactory solution to this specific problem. Furthermore, this problem may be a barrier for practitioners who want to implement notable previous dose‐finding approaches. To cope with this problem, we propose an approach using unconfirmed early responses as the surrogate efficacy outcome for the confirmed outcome. Because it is reasonable to expect moderate positive correlation between the two outcomes and the method replaces the surrogate outcome with the confirmed outcome once it becomes available, the proposed approach can reduce irrelevant dose selection and accumulation of bias. Moreover, it is also expected that it can significantly shorten study duration. Using simulation studies, we demonstrate the positive utility of the proposed approach and provide three variations of it, all of which can be easily implemented with modified likelihood functions and outcome variable definitions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号