首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stationary long memory processes have been extensively studied over the past decades. When we deal with financial, economic, or environmental data, seasonality and time-varying long-range dependence can often be observed and thus some kind of non-stationarity exists. To take into account this phenomenon, we propose a new class of stochastic processes: locally stationary k-factor Gegenbauer process. We present a procedure to estimate consistently the time-varying parameters by applying discrete wavelet packet transform. The robustness of the algorithm is investigated through a simulation study. And we apply our methods on Nikkei Stock Average 225 (NSA 225) index series.  相似文献   

2.
A wavelet approach is presented to estimate the variance function in heteroscedastic nonparametric regression model. The initial variance estimates are obtained as squared weighted sums of neighboring observations. The initial estimator of a smooth variance function is improved by means of wavelet smoothers under the situation that the samples at the dyadic points are not available. Since the traditional wavelet system for the variance function estimation is not appropriate in this situation, we demonstrate that the choice of the wavelet system is significant to have better performance. This is accomplished by choosing a suitable wavelet system known as the generalized coiflets. We conduct extensive simulations to evaluate finite sample performance of our method. We also illustrate our method using a real dataset.  相似文献   

3.
The estimation of a multivariate function from a stationary m-dependent process is investigated, with a special focus on the case where m is large or unbounded. We develop an adaptive estimator based on wavelet methods. Under flexible assumptions on the nonparametric model, we prove the good performances of our estimator by determining sharp rates of convergence under two kinds of errors: the pointwise mean squared error and the mean integrated squared error. We illustrate our theoretical result by considering the multivariate density estimation problem, the derivatives density estimation problem, the density estimation problem in a GARCH-type model and the multivariate regression function estimation problem. The performance of proposed estimator has been shown by a numerical study for a simulated and real data sets.  相似文献   

4.
Both kriging and non-parametric regression smoothing can model a non-stationary regression function with spatially correlated errors. However comparisons have mainly been based on ordinary kriging and smoothing with uncorrelated errors. Ordinary kriging attributes smoothness of the response to spatial autocorrelation whereas non-parametric regression attributes trends to a smooth regression function. For spatial processes it is reasonable to suppose that the response is due to both trend and autocorrelation. This paper reviews methodology for non-parametric regression with autocorrelated errors which is a natural compromise between the two methods. Re-analysis of the one-dimensional stationary spatial data of Laslett (1994) and a clearly non-stationary time series demonstrates the rather surprising result that for these data, ordinary kriging outperforms more computationally intensive models including both universal kriging and correlated splines for spatial prediction. For estimating the regression function, non-parametric regression provides adaptive estimation, but the autocorrelation must be accounted for in selecting the smoothing parameter.  相似文献   

5.
In this article, we construct the uniform confidence band (UCB) of nonparametric trend in a partially linear model with locally stationary regressors. A two-stage semiparametric regression is employed to estimate the trend function. Based on this estimate, we develop an invariance principle to construct the UCB of the trend function. The proposed methodology is used to estimate the Non-Accelerating Inflation Rate of Unemployment (NAIRU) in the Phillips Curve and to perform inference of the parameter based on its UCB. The empirical results strongly suggest that the U.S. NAIRU is time-varying.  相似文献   

6.
Abstract.  The empirical semivariogram of residuals from a regression model with stationary errors may be used to estimate the covariance structure of the underlying process. For prediction (kriging) the bias of the semivariogram estimate induced by using residuals instead of errors has only a minor effect because the bias is small for small lags. However, for estimating the variance of estimated regression coefficients and of predictions, the bias due to using residuals can be quite substantial. Thus we propose a method for reducing this bias. The adjusted empirical semivariogram is then isotonized and made conditionally negative-definite and used to estimate the variance of estimated regression coefficients in a general estimating equations setup. Simulation results for least squares and robust regression show that the proposed method works well in linear models with stationary correlated errors.  相似文献   

7.
8.
The purpose of this paper is to consider the problem of statistical inference about a hazard rate function that is specified as the product of a parametric regression part and a non-parametric baseline hazard. Unlike Cox's proportional hazard model, the baseline hazard not only depends on the duration variable, but also on the starting date of the phenomenon of interest. We propose a new estimator of the regression parameter which allows for non-stationarity in the hazard rate. We show that it is asymptotically normal at root- n and that its asymptotic variance attains the information bound for estimation of the regression coefficient. We also consider an estimator of the integrated baseline hazard, and determine its asymptotic properties. The finite sample performance of our estimators are studied.  相似文献   

9.
Summary.  Local polynomial regression is a useful non-parametric regression tool to explore fine data structures and has been widely used in practice. We propose a new non-parametric regression technique called local composite quantile regression smoothing to improve local polynomial regression further. Sampling properties of the estimation procedure proposed are studied. We derive the asymptotic bias, variance and normality of the estimate proposed. The asymptotic relative efficiency of the estimate with respect to local polynomial regression is investigated. It is shown that the estimate can be much more efficient than the local polynomial regression estimate for various non-normal errors, while being almost as efficient as the local polynomial regression estimate for normal errors. Simulation is conducted to examine the performance of the estimates proposed. The simulation results are consistent with our theoretical findings. A real data example is used to illustrate the method proposed.  相似文献   

10.
In this paper, we investigate the use of wavelet techniques in the study of the nth order fractional Brownian motion (n-fBm). First, we exploit the continuous wavelet transform??s capabilities in derivative calculation to construct a two-step estimator of the scaling exponent of the n-fBm process. We show, via simulation, that the proposed method improves the estimation performance of the n-fBm signals contaminated by large-scale noise. Second, we analyze the statistical properties of the n-fBm process in the time-scale plan. We demonstrate that, for a convenient choice of the wavelet basis, the discrete wavelet detail coefficients of the n-fBm process are stationary at each resolution level whereas their variance exhibits a power-law behavior. Using the latter property, we discuss a weighted least squares regression based-estimator for this class of stochastic process. Experiments carried out on simulated and real-world datasets prove the relevance of the proposed method.  相似文献   

11.
Weighted log‐rank estimating function has become a standard estimation method for the censored linear regression model, or the accelerated failure time model. Well established statistically, the estimator defined as a consistent root has, however, rather poor computational properties because the estimating function is neither continuous nor, in general, monotone. We propose a computationally efficient estimator through an asymptotics‐guided Newton algorithm, in which censored quantile regression methods are tailored to yield an initial consistent estimate and a consistent derivative estimate of the limiting estimating function. We also develop fast interval estimation with a new proposal for sandwich variance estimation. The proposed estimator is asymptotically equivalent to the consistent root estimator and barely distinguishable in samples of practical size. However, computation time is typically reduced by two to three orders of magnitude for point estimation alone. Illustrations with clinical applications are provided.  相似文献   

12.
Wavelet Threshold Estimators for Data with Correlated Noise   总被引:1,自引:0,他引:1  
Wavelet threshold estimators for data with stationary correlated noise are constructed by applying a level-dependent soft threshold to the coefficients in the wavelet transform. A variety of threshold choices is proposed, including one based on an unbiased estimate of mean-squared error. The practical performance of the method is demonstrated on examples, including data from a neurophysiological context. The theoretical properties of the estimators are investigated by comparing them with an ideal but unattainable `bench-mark', that can be considered in the wavelet context as the risk obtained by ideal spatial adaptivity, and more generally is obtained by the use of an `oracle' that provides information that is not actually available in the data. It is shown that the level-dependent threshold estimator performs well relative to the bench-mark risk, and that its minimax behaviour cannot be improved on in order of magnitude by any other estimator. The wavelet domain structure of both short- and long-range dependent noise is considered, and in both cases it is shown that the estimators have near optimal behaviour simultaneously in a wide range of function classes, adapting automatically to the regularity properties of the underlying model. The proofs of the main results are obtained by considering a more general multivariate normal decision theoretic problem.  相似文献   

13.
Confidence intervals are constructed for real-valued parameter estimation in a general regression model with normal errors. When the error variance is known these intervals are optimal (in the sense of minimizing length subject to guaranteed probability of coverage) among all intervals estimates which are centered at a linear estimate of the parameter. When the error variance is unknown and the regression model is an approximately linear model (a class of models which permits bounded systematic departures from an underlying ideal model) then an independent estimate of variance is found and the intervals can then be appropriately scaled.  相似文献   

14.
This paper addresses, via thresholding, the estimation of a possibly sparse signal observed subject to Gaussian noise. Conceptually, the optimal threshold for such problems depends upon the strength of the underlying signal. We propose two new methods that aim to adapt to potential local variation in this signal strength and select a variable threshold accordingly. Our methods are based upon an empirical Bayes approach with a smoothly variable mixing weight chosen via either spline or kernel based marginal maximum likelihood regression. We demonstrate the excellent performance of our methods in both one and two-dimensional estimation when compared to various alternative techniques. In addition, we consider the application to wavelet denoising where reconstruction quality is significantly improved with local adaptivity.  相似文献   

15.
Abstract.  We develop a variance reduction method for smoothing splines. For a given point of estimation, we define a variance-reduced spline estimate as a linear combination of classical spline estimates at three nearby points. We first develop a variance reduction method for spline estimators in univariate regression models. We then develop an analogous variance reduction method for spline estimators in clustered/longitudinal models. Simulation studies are performed which demonstrate the efficacy of our variance reduction methods in finite sample settings. Finally, a real data analysis with the motorcycle data set is performed. Here we consider variance estimation and generate 95% pointwise confidence intervals for the unknown regression function.  相似文献   

16.
We consider nonparametric estimation of a regression curve when the data are observed with Berkson errors or with a mixture of classical and Berkson errors. In this context, other existing nonparametric procedures can either estimate the regression curve consistently on a very small interval or require complicated inversion of an estimator of the Fourier transform of a nonparametric regression estimator. We introduce a new estimation procedure which is simpler to implement, and study its asymptotic properties. We derive convergence rates which are faster than those previously obtained in the literature, and we prove that these rates are optimal. We suggest a data-driven bandwidth selector and apply our method to some simulated examples.  相似文献   

17.
It is known that for nonparametric regression, local linear composite quantile regression (local linear CQR) is a more competitive technique than classical local linear regression since it can significantly improve estimation efficiency under a class of non-normal and symmetric error distributions. However, this method only applies to symmetric errors because, without symmetric condition, the estimation bias is non-negligible and therefore the resulting estimator is inconsistent. In this paper, we propose a weighted local linear CQR method for general error conditions. This method applies to both symmetric and asymmetric random errors. Because of the use of weights, the estimation bias is eliminated asymptotically and the asymptotic normality is established. Furthermore, by minimizing asymptotic variance, the optimal weights are computed and consequently the optimal estimate (the most efficient estimate) is obtained. By comparing relative efficiency theoretically or numerically, we can ensure that the new estimation outperforms the local linear CQR estimation. Finite sample behaviors conducted by simulation studies further illustrate the theoretical findings.  相似文献   

18.
Time series arising in practice often have an inherently irregular sampling structure or missing values, that can arise for example due to a faulty measuring device or complex time-dependent nature. Spectral decomposition of time series is a traditionally useful tool for data variability analysis. However, existing methods for spectral estimation often assume a regularly-sampled time series, or require modifications to cope with irregular or ‘gappy’ data. Additionally, many techniques also assume that the time series are stationary, which in the majority of cases is demonstrably not appropriate. This article addresses the topic of spectral estimation of a non-stationary time series sampled with missing data. The time series is modelled as a locally stationary wavelet process in the sense introduced by Nason et al. (J. R. Stat. Soc. B 62(2):271–292, 2000) and its realization is assumed to feature missing observations. Our work proposes an estimator (the periodogram) for the process wavelet spectrum, which copes with the missing data whilst relaxing the strong assumption of stationarity. At the centre of our construction are second generation wavelets built by means of the lifting scheme (Sweldens, Wavelet Applications in Signal and Image Processing III, Proc. SPIE, vol. 2569, pp. 68–79, 1995), designed to cope with irregular data. We investigate the theoretical properties of our proposed periodogram, and show that it can be smoothed to produce a bias-corrected spectral estimate by adopting a penalized least squares criterion. We demonstrate our method with real data and simulated examples.  相似文献   

19.
This paper describes an estimation of the time delay between two stationary time series signals, in which an input signal is measured with little noise and an output signal is the sum of a noise and the response from a linear system. We use the Hilbert transform relation for minimum delay systems to estimate the time delay. Some computer simulation results are given to evaluate the performance of the proposed method.  相似文献   

20.
We propose a state-space approach for GARCH models with time-varying parameters able to deal with non-stationarity that is usually observed in a wide variety of time series. The parameters of the non-stationary model are allowed to vary smoothly over time through non-negative deterministic functions. We implement the estimation of the time-varying parameters in the time domain through Kalman filter recursive equations, finding a state-space representation of a class of time-varying GARCH models. We provide prediction intervals for time-varying GARCH models and, additionally, we propose a simple methodology for handling missing values. Finally, the proposed methodology is applied to the Chilean Stock Market (IPSA) and to the American Standard&Poor's 500 index (S&P500).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号