首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper we introduce an interesting feature of the generalized least absolute deviations method for seemingly unrelated regression equations (SURE) models. Contrary to the collapse of generalized leasts-quares parameter estimations of SURE models to the ordinary least-squares estimations of the individual equations when the same regressors are common between all equations, the estimations of the proposed methodology are not identical to the least absolute deviations estimations of the individual equations. This is important since contrary to the least-squares methods, one can take advantage of efficiency gain due to cross-equation correlations even if the system includes the same regressors in each equation.  相似文献   

3.
In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.  相似文献   

4.
5.
Based on a compound Poisson distribution, new bivariate regression models are introduced and studied. The parameters of the bivariate regression models are estimated by using the maximum likelihood method. Two applications on real datasets are presented to illustrate the models. The results show that these models are compatible to other bivariate Poisson models.  相似文献   

6.
Multilevel models have been widely applied to analyze data sets which present some hierarchical structure. In this paper we propose a generalization of the normal multilevel models, named elliptical multilevel models. This proposal suggests the use of distributions in the elliptical class, thus involving all symmetric continuous distributions, including the normal distribution as a particular case. Elliptical distributions may have lighter or heavier tails than the normal ones. In the case of normal error models with the presence of outlying observations, heavy-tailed error models may be applied to accommodate such observations. In particular, we discuss some aspects of the elliptical multilevel models, such as maximum likelihood estimation and residual analysis to assess features related to the fitting and the model assumptions. Finally, two motivating examples analyzed under normal multilevel models are reanalyzed under Student-t and power exponential multilevel models. Comparisons with the normal multilevel model are performed by using residual analysis.  相似文献   

7.
Missing covariates data is a common issue in generalized linear models (GLMs). A model-based procedure arising from properly specifying joint models for both the partially observed covariates and the corresponding missing indicator variables represents a sound and flexible methodology, which lends itself to maximum likelihood estimation as the likelihood function is available in computable form. In this paper, a novel model-based methodology is proposed for the regression analysis of GLMs when the partially observed covariates are categorical. Pair-copula constructions are used as graphical tools in order to facilitate the specification of the high-dimensional probability distributions of the underlying missingness components. The model parameters are estimated by maximizing the weighted log-likelihood function by using an EM algorithm. In order to compare the performance of the proposed methodology with other well-established approaches, which include complete-cases and multiple imputation, several simulation experiments of Binomial, Poisson and Normal regressions are carried out under both missing at random and non-missing at random mechanisms scenarios. The methods are illustrated by modeling data from a stage III melanoma clinical trial. The results show that the methodology is rather robust and flexible, representing a competitive alternative to traditional techniques.  相似文献   

8.
This paper investigates the characterizations of certain discrete distributions within the framework of multivariate additive damage models. The univariate case for such models appoared in an article by N. Krishnaii (1974) and Rao and Rubin (1964). In this paper the survival distriution in specified and it is shown that linearity of the regression of the undamaged part on the damaged part, or the damaged part on the undamaged part leads to the characterizations of independent binomials, independent negative binomials, independent Poissons, multinomial and negative multinomial for the original p-dimensional observation.  相似文献   

9.
Hea-Jung Kim  Taeyoung Roh 《Statistics》2013,47(5):1082-1111
In regression analysis, a sample selection scheme often applies to the response variable, which results in missing not at random observations on the variable. In this case, a regression analysis using only the selected cases would lead to biased results. This paper proposes a Bayesian methodology to correct this bias based on a semiparametric Bernstein polynomial regression model that incorporates the sample selection scheme into a stochastic monotone trend constraint, variable selection, and robustness against departures from the normality assumption. We present the basic theoretical properties of the proposed model that include its stochastic representation, sample selection bias quantification, and hierarchical model specification to deal with the stochastic monotone trend constraint in the nonparametric component, simple bias corrected estimation, and variable selection for the linear components. We then develop computationally feasible Markov chain Monte Carlo methods for semiparametric Bernstein polynomial functions with stochastically constrained parameter estimation and variable selection procedures. We demonstrate the finite-sample performance of the proposed model compared to existing methods using simulation studies and illustrate its use based on two real data applications.  相似文献   

10.
In the context of longitudinal data analysis, a random function typically represents a subject that is often observed at a small number of time point. For discarding this restricted condition of observation number of each subject, we consider the semiparametric partially linear regression models with mean function x?βx?β + g(z), where x and z   are functional data. The estimations of ββ and g(z) are presented and some asymptotic results are given. It is shown that the estimator of the parametric component is asymptotically normal. The convergence rate of the estimator of the nonparametric component is also obtained. Here, the observation number of each subject is completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.  相似文献   

11.
The mixed effects model, in its various forms, is a common model in applied statistics. A useful strategy for fitting this model implements EM-type algorithms by treating the random effects as missing data. Such implementations, however, can be painfully slow when the variances of the random effects are small relative to the residual variance. In this paper, we apply the 'working parameter' approach to derive alternative EM-type implementations for fitting mixed effects models, which we show empirically can be hundreds of times faster than the common EM-type implementations. In our limited simulations, they also compare well with the routines in S-PLUS® and Stata® in terms of both speed and reliability. The central idea of the working parameter approach is to search for efficient data augmentation schemes for implementing the EM algorithm by minimizing the augmented information over the working parameter, and in the mixed effects setting this leads to a transfer of the mixed effects variances into the regression slope parameters. We also describe a variation for computing the restricted maximum likelihood estimate and an adaptive algorithm that takes advantage of both the standard and the alternative EM-type implementations.  相似文献   

12.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

13.
This paper presents a Bayesian solution to the problem of time series forecasting, for the case in which the generating process is an autoregressive of order one, with a normal random coefficient. The proposed procedure is based on the predictive density of the future observation. Conjugate priors are used for some parameters, while improper vague priors are used for others.  相似文献   

14.
Sinh-normal/independent distributions are a class of symmetric heavy-tailed distributions that include the sinh-normal distribution as a special case, which has been used extensively in Birnbaum–Saunders regression models. Here, we explore the use of Markov Chain Monte Carlo methods to develop a Bayesian analysis in nonlinear regression models when Sinh-normal/independent distributions are assumed for the random errors term, and it provides a robust alternative to the sinh-normal nonlinear regression model. Bayesian mechanisms for parameter estimation, residual analysis and influence diagnostics are then developed, which extend the results of Farias and Lemonte [Bayesian inference for the Birnbaum-Saunders nonlinear regression model, Stat. Methods Appl. 20 (2011), pp. 423-438] who used the Sinh-normal/independent distributions with known scale parameter. Some special cases, based on the sinh-Student-t (sinh-St), sinh-slash (sinh-SL) and sinh-contaminated normal (sinh-CN) distributions are discussed in detail. Two real datasets are finally analyzed to illustrate the developed procedures.  相似文献   

15.
In this article, the parametric robust regression approaches are proposed for making inferences about regression parameters in the setting of generalized linear models (GLMs). The proposed methods are able to test hypotheses on the regression coefficients in the misspecified GLMs. More specifically, it is demonstrated that with large samples, the normal and gamma regression models can be properly adjusted to become asymptotically valid for inferences about regression parameters under model misspecification. These adjusted regression models can provide the correct type I and II error probabilities and the correct coverage probability for continuous data, as long as the true underlying distributions have finite second moments.  相似文献   

16.
In the context of regression rnodels with random effects, repeated response are traditionally assumed to be mutually independent conditional on the random effects. In order to asseess the validity of such an assumption and its impact on parameter inference, we propose an estimating equation methodology where both random eifects and within-subject correlation are modeled. This fllows a subsequent analysis on the statistical sianificance of the conditional correlation. We illustrate this method with the epilepsy data of Thall and Vail (1990), and find our method useh in a proper representation for khe random effect modeling.  相似文献   

17.
Although most models for incomplete longitudinal data are formulated within the selection model framework, pattern-mixture models have gained considerable interest in recent years [R.J.A. Little, Pattern-mixture models for multivariate incomplete data, J. Am. Stat. Assoc. 88 (1993), pp. 125–134; R.J.A. Lrittle, A class of pattern-mixture models for normal incomplete data, Biometrika 81 (1994), pp. 471–483], since it is often argued that selection models, although many are identifiable, should be approached with caution, especially in the context of MNAR models [R.J. Glynn, N.M. Laird, and D.B. Rubin, Selection modeling versus mixture modeling with nonignorable nonresponse, in Drawing Inferences from Self-selected Samples, H. Wainer, ed., Springer-Verlag, New York, 1986, pp. 115–142]. In this paper, the focus is on several strategies to fit pattern-mixture models for non-monotone categorical outcomes. The issue of under-identification in pattern-mixture models is addressed through identifying restrictions. Attention will be given to the derivation of the marginal covariate effect in pattern-mixture models for non-monotone categorical data, which is less straightforward than in the case of linear models for continuous data. The techniques developed will be used to analyse data from a clinical study in psychiatry.  相似文献   

18.
In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Inheriting their asymptotic properties, our information criteria are consistent in variable selection in both the large-sample and the high-dimensional asymptotic frameworks. In numerical simulations, variable selection methods based on our information criteria choose the true set of variables with high probability in most cases.  相似文献   

19.
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.  相似文献   

20.
The prediction error for mixed models can have a conditional or a marginal perspective depending on the research focus. We introduce a novel conditional version of the optimism theorem for mixed models linking the conditional prediction error to covariance penalties for mixed models. Different possibilities for estimating these conditional covariance penalties are introduced. These are bootstrap methods, cross-validation, and a direct approach called Steinian. The behavior of the different estimation techniques is assessed in a simulation study for the binomial-, the t-, and the gamma distribution and for different kinds of prediction error. Furthermore, the impact of the estimation techniques on the prediction error is discussed based on an application to undernutrition in Zambia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号