首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we first propose a new estimator of entropy for continuous random variables. Our estimator is obtained by correcting the coefficients of Vasicek's [A test for normality based on sample entropy, J. R. Statist. Soc. Ser. B 38 (1976), pp. 54–59] entropy estimator. We prove the consistency of our estimator. Monte Carlo studies show that our estimator is better than the entropy estimators proposed by Vasicek, Ebrahimi et al. [Two measures of sample entropy, Stat. Probab. Lett. 20 (1994), pp. 225–234] and Correa [A new estimator of entropy, Commun. Stat. Theory Methods 24 (1995), pp. 2439–2449] in terms of root mean square error. We then derive the non-parametric distribution function corresponding to our proposed entropy estimator as a piece-wise uniform distribution. We also introduce goodness-of-fit tests for testing exponentiality and normality based on the said distribution and compare its performance with their leading competitors.  相似文献   

2.
In this paper, we introduce a new estimator of entropy of a continuous random variable. We compare the proposed estimator with the existing estimators, namely, Vasicek [A test for normality based on sample entropy, J. Roy. Statist. Soc. Ser. B 38 (1976), pp. 54–59], van Es [Estimating functionals related to a density by class of statistics based on spacings, Scand. J. Statist. 19 (1992), pp. 61–72], Correa [A new estimator of entropy, Commun. Statist. Theory and Methods 24 (1995), pp. 2439–2449] and Wieczorkowski-Grzegorewski [Entropy estimators improvements and comparisons, Commun. Statist. Simulation and Computation 28 (1999), pp. 541–567]. We next introduce a new test for normality. By simulation, the powers of the proposed test under various alternatives are compared with normality tests proposed by Vasicek (1976) and Esteban et al. [Monte Carlo comparison of four normality tests using different entropy estimates, Commun. Statist.–Simulation and Computation 30(4) (2001), pp. 761–785].  相似文献   

3.
In this paper, we extend the work of Gjestvang and Singh [A new randomized response model, J. R. Statist. Soc. Ser. B (Methodological) 68 (2006), pp. 523–530] to propose a new unrelated question randomized response model that can be used for any sampling scheme. The interesting thing is that the estimator based on one sample is free from the use of known proportion of an unrelated character, unlike Horvitz et al. [The unrelated question randomized response model, Social Statistics Section, Proceedings of the American Statistical Association, 1967, pp. 65–72], Greenberg et al. [The unrelated question randomized response model: Theoretical framework, J. Amer. Statist. Assoc. 64 (1969), pp. 520–539] and Mangat et al. [An improved unrelated question randomized response strategy, Calcutta Statist. Assoc. Bull. 42 (1992), pp. 167–168] models. The relative efficiency of the proposed model with respect to the existing competitors has been studied.  相似文献   

4.
In this paper, we introduce a test for uniformity and use it as the second stage of an exact goodness-of-fit test of exponentiality. By simulation, the powers of the proposed test under various alternatives are compared with exponentiality test based on Kullback–Leibler information proposed by Ebrahimi et al. [N. Ebrahimi, M. Habibullah, and E.S. Soofi, Testing exponentiality based on Kullback–Leiber information, J. R. Statist. Soc. Ser. B 54 (1992), pp. 739–748]. The results are impressive, i.e. the proposed test has higher power than the test based on entropy.  相似文献   

5.
This article investigates the confidence regions for semiparametric nonlinear reproductive dispersion models (SNRDMs), which is an extension of nonlinear regression models. Based on local linear estimate of nonparametric component and generalized profile likelihood estimate of parameter in SNRDMs, a modified geometric framework of Bates and Wattes is proposed. Within this geometric framework, we present three kinds of improved approximate confidence regions for the parameters and parameter subsets in terms of curvatures. The work extends the previous results of Hamilton et al. [in Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions, Ann. Statist. 10, pp. 386–393, 1982], Hamilton [in Confidence regions for parameter subset in nonlinear regression, Biometrika, 73, pp. 57–64, 1986], Wei [in On confidence regions of embedded models in regular parameter families (a geometric approch), Austral. J. Statist. 36, pp. 327–338, 1994], Tang et al. [in Confidence regions in quasi-likelihood nonlinear models: a geometric approach, J. Biomath. 15, pp. 55–64, 2000b] and Zhu et al. [in On confidence regions of semiparametric nonlinear regression models, Acta. Math. Scient. 20, pp. 68–75, 2000].  相似文献   

6.
In this paper, we suggest a class of estimators for estimating the population mean ? of the study variable Y using information on X?, the population mean of the auxiliary variable X using ranked set sampling envisaged by McIntyre [A method of unbiased selective sampling using ranked sets, Aust. J. Agric. Res. 3 (1952), pp. 385–390] and developed by Takahasi and Wakimoto [On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Statist. Math. 20 (1968), pp. 1–31]. The estimator reported by Kadilar et al. [Ratio estimator for the population mean using ranked set sampling, Statist. Papers 50 (2009), pp. 301–309] is identified as a member of the proposed class of estimators. The bias and the mean-squared error (MSE) of the proposed class of estimators are obtained. An asymptotically optimum estimator in the class is identified with its MSE formulae. To judge the merits of the suggested class of estimators over others, an empirical study is carried out.  相似文献   

7.
ABSTRACT

In this paper, we first consider the entropy estimators introduced by Vasicek [A test for normality based on sample entropy. J R Statist Soc, Ser B. 1976;38:54–59], Ebrahimi et al. [Two measures of sample entropy. Stat Probab Lett. 1994;20:225–234], Yousefzadeh and Arghami [Testing exponentiality based on type II censored data and a new cdf estimator. Commun Stat – Simul Comput. 2008;37:1479–1499], Alizadeh Noughabi and Arghami [A new estimator of entropy. J Iran Statist Soc. 2010;9:53–64], and Zamanzade and Arghami [Goodness-of-fit test based on correcting moments of modified entropy estimator. J Statist Comput Simul. 2011;81:2077–2093], and the nonparametric distribution functions corresponding to them. We next introduce goodness-of-fit test statistics for the Laplace distribution based on the moments of nonparametric distribution functions of the aforementioned estimators. We obtain power estimates of the proposed test statistics with Monte Carlo simulation and compare them with the competing test statistics against various alternatives. Performance of the proposed new test statistics is illustrated in real cases.  相似文献   

8.
We study variable sampling plans for exponential distributions based on type-I hybrid censored samples. For this problem, two sampling plans based on the non-failure sample proportion and the conditional maximum likelihood estimator are proposed by Chen et al. [J. Chen, W. Chou, H. Wu, and H. Zhou, Designing acceptance sampling schemes for life testing with mixed censoring, Naval Res. Logist. 51 (2004), pp. 597–612] and Lin et al. [C.-T. Lin, Y.-L. Huang, and N. Balakrishnan, Exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II censored samples, Commun. Statist. Simul. Comput. 37 (2008), pp. 1101–1116], respectively. From the theoretic decision point of view, the preceding two sampling plans are not optimal due to their decision functions not being the Bayes decision functions. In this article, we consider the decision theoretic approach, and the optimal Bayesian sampling plan based on sufficient statistics is derived under a general loss function. Furthermore, for the conjugate prior distribution, the closed-form formula of the Bayes decision rule can be obtained under either the linear or quadratic decision loss. The resulting Bayesian sampling plan has the minimum Bayes risk, and hence it is better than the sampling plans proposed by Chen et al. (2004) and Lin et al. (2008). Numerical comparisons are given and demonstrate that the performance of the proposed Bayesian sampling plan is superior to that of Chen et al. (2004) and Lin et al. (2008).  相似文献   

9.
Variable selection in multiple linear regression models is considered. It is shown that for the special case of orthogonal predictor variables, an adaptive pre-test-type procedure proposed by Venter and Steel [Simultaneous selection and estimation for the some zeros family of normal models, J. Statist. Comput. Simul. 45 (1993), pp. 129–146] is almost equivalent to least angle regression, proposed by Efron et al. [Least angle regression, Ann. Stat. 32 (2004), pp. 407–499]. A new adaptive pre-test-type procedure is proposed, which extends the procedure of Venter and Steel to the general non-orthogonal case in a multiple linear regression analysis. This new procedure is based on a likelihood ratio test where the critical value is determined data-dependently. A practical illustration and results from a simulation study are presented.  相似文献   

10.
In this paper, we consider the bootstrap procedure for the augmented Dickey–Fuller (ADF) unit root test by implementing the modified divergence information criterion (MDIC, Mantalos et al. [An improved divergence information criterion for the determination of the order of an AR process, Commun. Statist. Comput. Simul. 39(5) (2010a), pp. 865–879; Forecasting ARMA models: A comparative study of information criteria focusing on MDIC, J. Statist. Comput. Simul. 80(1) (2010b), pp. 61–73]) for the selection of the optimum number of lags in the estimated model. The asymptotic distribution of the resulting bootstrap ADF/MDIC test is established and its finite sample performance is investigated through Monte-Carlo simulations. The proposed bootstrap tests are found to have finite sample sizes that are generally much closer to their nominal values, than those tests that rely on other information criteria, like the Akaike information criterion [H. Akaike, Information theory and an extension of the maximum likelihood principle, in Proceedings of the 2nd International Symposium on Information Theory, B.N. Petrov and F. Csáki, eds., Akademiai Kaido, Budapest, 1973, pp. 267–281]. The simulations reveal that the proposed procedure is quite satisfactory even for models with large negative moving average coefficients.  相似文献   

11.
In this article, new pseudo-Bayes and pseudo-empirical Bayes estimators for estimating the proportion of a potentially sensitive attribute in a survey sampling have been introduced. The proposed estimators are compared with the recent estimator proposed by Odumade and Singh [Efficient use of two decks of cards in randomized response sampling, Comm. Statist. Theory Methods 38 (2009), pp. 439–446] and Warner [Randomized response: A survey technique for eliminating evasive answer bias, J. Amer. Statist. Assoc. 60 (1965), pp. 63–69].  相似文献   

12.
This paper deals with a study of different types of tests for the two-sided c-sample scale problem. We consider the classical parametric test of Bartlett [M.S. Bartlett, Properties of sufficiency and statistical tests, Proc. R. Stat. Soc. Ser. A. 160 (1937), pp. 268–282] several nonparametric tests, especially the test of Fligner and Killeen [M.A. Fligner and T.J. Killeen, Distribution-free two-sample tests for scale, J. Amer. Statist. Assoc. 71 (1976), pp. 210–213], the test of Levene [H. Levene, Robust tests for equality of variances, in Contribution to Probability and Statistics, I. Olkin, ed., Stanford University Press, Palo Alto, 1960, pp. 278–292] and a robust version of it introduced by Brown and Forsythe [M.B. Brown and A.B. Forsythe, Robust tests for the equality of variances, J. Amer. Statist. Assoc. 69 (1974), pp. 364–367] as well as two adaptive tests proposed by Büning [H. Büning, Adaptive tests for the c-sample location problem – the case of two-sided alternatives, Comm. Statist.Theory Methods. 25 (1996), pp. 1569–1582] and Büning [H. Büning, An adaptive test for the two sample scale problem, Nr. 2003/10, Diskussionsbeiträge des Fachbereich Wirtschaftswissenschaft der Freien Universität Berlin, Volkswirtschaftliche Reihe, 2003]. which are based on the principle of Hogg [R.V. Hogg, Adaptive robust procedures. A partial review and some suggestions for future applications and theory, J. Amer. Statist. Assoc. 69 (1974), pp. 909–927]. For all the tests we use Bootstrap sampling strategies, too. We compare via Monte Carlo Methods all the tests by investigating level α and power β of the tests for distributions with different strength of tailweight and skewness and for various sample sizes. It turns out that the test of Fligner and Killeen in combination with the bootstrap is the best one among all tests considered.  相似文献   

13.
Doubly robust (DR) estimators of the mean with missing data are compared. An estimator is DR if either the regression of the missing variable on the observed variables or the missing data mechanism is correctly specified. One method is to include the inverse of the propensity score as a linear term in the imputation model [D. Firth and K.E. Bennett, Robust models in probability sampling, J. R. Statist. Soc. Ser. B. 60 (1998), pp. 3–21; D.O. Scharfstein, A. Rotnitzky, and J.M. Robins, Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion), J. Am. Statist. Assoc. 94 (1999), pp. 1096–1146; H. Bang and J.M. Robins, Doubly robust estimation in missing data and causal inference models, Biometrics 61 (2005), pp. 962–972]. Another method is to calibrate the predictions from a parametric model by adding a mean of the weighted residuals [J.M Robins, A. Rotnitzky, and L.P. Zhao, Estimation of regression coefficients when some regressors are not always observed, J. Am. Statist. Assoc. 89 (1994), pp. 846–866; D.O. Scharfstein, A. Rotnitzky, and J.M. Robins, Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion), J. Am. Statist. Assoc. 94 (1999), pp. 1096–1146]. The penalized spline propensity prediction (PSPP) model includes the propensity score into the model non-parametrically [R.J.A. Little and H. An, Robust likelihood-based analysis of multivariate data with missing values, Statist. Sin. 14 (2004), pp. 949–968; G. Zhang and R.J. Little, Extensions of the penalized spline propensity prediction method of imputation, Biometrics, 65(3) (2008), pp. 911–918]. All these methods have consistency properties under misspecification of regression models, but their comparative efficiency and confidence coverage in finite samples have received little attention. In this paper, we compare the root mean square error (RMSE), width of confidence interval and non-coverage rate of these methods under various mean and response propensity functions. We study the effects of sample size and robustness to model misspecification. The PSPP method yields estimates with smaller RMSE and width of confidence interval compared with other methods under most situations. It also yields estimates with confidence coverage close to the 95% nominal level, provided the sample size is not too small.  相似文献   

14.
This paper introduces a skewed log-Birnbaum–Saunders regression model based on the skewed sinh-normal distribution proposed by Leiva et al. [A skewed sinh-normal distribution and its properties and application to air pollution, Comm. Statist. Theory Methods 39 (2010), pp. 426–443]. Some influence methods, such as the local influence and generalized leverage, are presented. Additionally, we derived the normal curvatures of local influence under some perturbation schemes. An empirical application to a real data set is presented in order to illustrate the usefulness of the proposed model.  相似文献   

15.
Hu Yang 《Statistics》2013,47(6):759-766
In this paper, we introduce a stochastic restricted kd class estimator for the vector of parameters in a linear model when additional linear restrictions on the parameter vector are assumed to hold. The stochastic restricted kd class estimator is a generalization of the ordinary mixed estimator and the kd class estimator. We show that our new biased estimator is superior in the mean squared error matrix sense to the kd class estimator [S. Sakall?o?lu and S. Kaçiranlar, A new biased estimator based on ridge estimation, Statist. Papers 49 (2008), pp. 669–689] and the stochastic restricted Liu estimator [H. Yang and J.W. Xu, An alternative stochastic restricted Liu estimator in linear regression, Statist. Papers 50 (2009), pp. 639–647]. Finally, a numerical example is given to show the theoretical results.  相似文献   

16.
Sarjinder Singh 《Statistics》2013,47(3):566-574
In this note, a dual problem to the calibration of design weights of the Deville and Särndal [Calibration estimators in survey sampling, J. Amer. Statist. Assoc. 87 (1992), pp. 376–382] method has been considered. We conclude that the chi-squared distance between the design weights and the calibrated weights equals the square of the standardized Z-score obtained by the difference between the known population total of the auxiliary variable and its corresponding Horvitz and Thompson [A generalization of sampling without replacement from a finite universe, J. Amer. Statist. Assoc. 47 (1952), pp. 663–685] estimator divided by the sample standard deviation of the auxiliary variable to obtain the linear regression estimator in survey sampling.  相似文献   

17.
P.J. Huber 《Statistics》2013,47(1):41-53
Recently, cumulative residual entropy (CRE) has been found to be a new measure of information that parallels Shannon's entropy (see Rao et al. [Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory. 50(6) (2004), pp. 1220–1228] and Asadi and Zohrevand [On the dynamic cumulative residual entropy, J. Stat. Plann. Inference 137 (2007), pp. 1931–1941]). Motivated by this finding, in this paper, we introduce a generalized measure of it, namely cumulative residual Renyi's entropy, and study its properties. We also examine it in relation to some applied problems such as weighted and equilibrium models. Finally, we extend this measure into the bivariate set-up and prove certain characterizing relationships to identify different bivariate lifetime models.  相似文献   

18.
The demand for reliable statistics in subpopulations, when only reduced sample sizes are available, has promoted the development of small area estimation methods. In particular, an approach that is now widely used is based on the seminal work by Battese et al. [An error-components model for prediction of county crop areas using survey and satellite data, J. Am. Statist. Assoc. 83 (1988), pp. 28–36] that uses linear mixed models (MM). We investigate alternatives when a linear MM does not hold because, on one side, linearity may not be assumed and/or, on the other, normality of the random effects may not be assumed. In particular, Opsomer et al. [Nonparametric small area estimation using penalized spline regression, J. R. Statist. Soc. Ser. B 70 (2008), pp. 265–283] propose an estimator that extends the linear MM approach to the case in which a linear relationship may not be assumed using penalized splines regression. From a very different perspective, Chambers and Tzavidis [M-quantile models for small area estimation, Biometrika 93 (2006), pp. 255–268] have recently proposed an approach for small-area estimation that is based on M-quantile (MQ) regression. This allows for models robust to outliers and to distributional assumptions on the errors and the area effects. However, when the functional form of the relationship between the qth MQ and the covariates is not linear, it can lead to biased estimates of the small area parameters. Pratesi et al. [Semiparametric M-quantile regression for estimating the proportion of acidic lakes in 8-digit HUCs of the Northeastern US, Environmetrics 19(7) (2008), pp. 687–701] apply an extended version of this approach for the estimation of the small area distribution function using a non-parametric specification of the conditional MQ of the response variable given the covariates [M. Pratesi, M.G. Ranalli, and N. Salvati, Nonparametric m-quantile regression using penalized splines, J. Nonparametric Stat. 21 (2009), pp. 287–304]. We will derive the small area estimator of the mean under this model, together with its mean-squared error estimator and compare its performance to the other estimators via simulations on both real and simulated data.  相似文献   

19.
The aim of this paper is to provide some practical aspects of point and interval estimates of the global maximum of a function using extreme value theory. Consider a real-valued function f:D→? defined on a bounded interval D such that f is either not known analytically or is known analytically but has rather a complicated analytic form. We assume that f possesses a global maximum attained, say, at u*∈D with maximal value x*=max u  f(u)?f(u*). The problem of seeking the optimum of a function which is more or less unknown to the observer has resulted in the development of a large variety of search techniques. In this paper we use the extreme-value approach as appears in Dekkers et al. [A moment estimator for the index of an extreme-value distribution, Ann. Statist. 17 (1989), pp. 1833–1855] and de Haan [Estimation of the minimum of a function using order statistics, J. Amer. Statist. Assoc. 76 (1981), pp. 467–469]. We impose some Lipschitz conditions on the functions being investigated and through repeated simulation-based samplings, we provide various practical interpretations of the parameters involved as well as point and interval estimates for x*.  相似文献   

20.
In this paper, the three-decision procedures to classify p treatments as better than or worse than one control, proposed for normal/symmetric probability models [Bohrer, Multiple three-decision rules for parametric signs. J. Amer. Statist. Assoc. 74 (1979), pp. 432–437; Bohrer et al., Multiple three-decision rules for factorial simple effects: Bonferroni wins again!, J. Amer. Statist. Assoc. 76 (1981), pp. 119–124; Liu, A multiple three-decision procedure for comparing several treatments with a control, Austral. J. Statist. 39 (1997), pp. 79–92 and Singh and Mishra, Classifying logistic populations using sample medians, J. Statist. Plann. Inference 137 (2007), pp. 1647–1657]; in the literature, have been extended to asymmetric two-parameter exponential probability models to classify p(p≥1) treatments as better than or worse than the best of q(q≥1) control treatments in terms of location parameters. Critical constants required for the implementation of the proposed procedure are tabulated for some pre-specified values of probability of no misclassification. Power function of the proposed procedure is also defined and a common sample size necessary to guarantee various pre-specified power levels are tabulated. Optimal allocation scheme is also discussed. Finally, the implementation of the proposed methodology is demonstrated through numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号