首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the literature, assuming independence of random variables X and Y, statistical estimation of the stress–strength parameter R = P(X > Y) is intensively investigated. However, in some real applications, the strength variable X could be highly dependent on the stress variable Y. In this paper, unlike the common practice in the literature, we discuss on estimation of the parameter R where more realistically X and Y are dependent random variables distributed as bivariate Rayleigh model. We derive the Bayes estimates and highest posterior density credible intervals of the parameters using suitable priors on the parameters. Because there are not closed forms for the Bayes estimates, we will use an approximation based on Laplace method and a Markov Chain Monte Carlo technique to obtain the Bayes estimate of R and unknown parameters. Finally, simulation studies are conducted in order to evaluate the performances of the proposed estimators and analysis of two data sets are provided.  相似文献   

2.
This paper deals with the estimation of reliability R = P(Y < X) when X is a random strength of a component subjected to a random stress Y, and (X, Y) follows a bivariate Rayleigh distribution. The maximum likelihood estimator of R and its asymptotic distribution are obtained. An asymptotic confidence interval of R is constructed using the asymptotic distribution. Also, two confidence intervals are proposed based on Bootstrap method and a computational approach. Testing of the reliability based on asymptotic distribution of R is discussed. Simulation study to investigate performance of the confidence intervals and tests has been carried out. Also, a numerical example is given to illustrate the proposed approaches.  相似文献   

3.
In this article, we obtain the UMVUE of the reliability function ξ=P(Y>X) and the UMVUE of ξ k =[P(Y>X)] k in the two-parameter exponential distributions with known scale parameters. We also derive the distribution of the UMVUE of ξ and further considering the tests of hypotheses regarding the reliability function ξ.  相似文献   

4.
ABSTRACT

The problem of estimation of R = P(Y < X) have been used in the paper. Let X has exponential distribution mixing with exponential distribution with parameters β and θ and Y independently of X has exponential distribution with parameter λ. By using a prior guess or estimate R0, different shrinkage estimators of R are derived. Then the performance of the estimators are discussed. Finally, we compare these results with Baklizei and Dayyeh (2003) approaches.  相似文献   

5.
This contribution deals with the statistical problem of evaluating the stress–strength reliability parameter R = P(X < Y), when both stress and strength data are prone to contamination. Standard likelihood inference can be badly affected by mild data inadequacies, that often occur in the form of several outliers. Then, robust tools are recommended. Here, inference relies on the weighted likelihood methodology. This approach has the advantage to lead to robust estimators, tests, and confidence intervals that share the main asymptotic properties of their classical counterparts. The accuracy of the proposed methodology is illustrated both by numerical studies and real-data applications.  相似文献   

6.
7.
Based on progressively Type II censored samples, we consider the estimation of R = P(Y < X) when X and Y are two independent Weibull distributions with different shape parameters, but having the same scale parameter. The maximum likelihood estimator, approximate maximum likelihood estimator, and Bayes estimator of R are obtained. Based on the asymptotic distribution of R, the confidence interval of R are obtained. Two bootstrap confidence intervals are also proposed. Analysis of a real data set is given for illustrative purposes. Monte Carlo simulations are also performed to compare the different proposed methods.  相似文献   

8.
This paper deals with the estimation of R = P(Y < X) when Y and X are two independent but not identically distributed Burr-type X random variables. Maximum likelihood, Bayes and empirical Bayes techniques are used for this purpose. Monte-Carlo simulation is carried out to compare the three methods of estimation. Also, two characterizations of the Burr-type X distribution are presented. The first characterization is based on the recurrence relationships between two successively conditional moments of a certain function of the random variable, whereas the second one is given by the conditional variance of that function.  相似文献   

9.
The aim of this paper is to study the estimation of the reliability R=P(Y<X) when X and Y are independent random variables that follow Kumaraswamy's distribution with different parameters. If we assume that the first shape parameter is common and known, the maximum-likelihood estimator (MLE), the exact confidence interval and the uniformly minimum variance unbiased estimator of R are obtained. Moreover, when the first parameter is common but unknown, MLEs, Bayes estimators, asymptotic distributions and confidence intervals for R are derived. Furthermore, Bayes and empirical Bayes estimators for R are obtained when the first parameter is common and known. Finally, when all four parameters are different and unknown, the MLE of R is obtained. Monte Carlo simulations are performed to compare the different proposed methods and conclusions on the findings are given.  相似文献   

10.
In this article, we consider the problem of estimation of the stress–strength parameter δ?=?P(Y?<?X) based on progressively first-failure-censored samples, when X and Y both follow two-parameter generalized inverted exponential distribution with different and unknown shape and scale parameters. The maximum likelihood estimator of δ and its asymptotic confidence interval based on observed Fisher information are constructed. Two parametric bootstrap boot-p and boot-t confidence intervals are proposed. We also apply Markov Chain Monte Carlo techniques to carry out Bayes estimation procedures. Bayes estimate under squared error loss function and the HPD credible interval of δ are obtained using informative and non-informative priors. A Monte Carlo simulation study is carried out for comparing the proposed methods of estimation. Finally, the methods developed are illustrated with a couple of real data examples.  相似文献   

11.
Abstract

A demonstration of the variance of Pearson's correlation coefficient r for samples of unrelated X, Y variables is laid out in elementary algebra. An approximation of var(r) for samples of ρ-related binormal variables is also provided.  相似文献   

12.
In this paper, a likelihood based analysis is developed and applied to obtain confidence intervals and p values for the stress-strength reliability R  =  P(X  <  Y) with right truncated exponentially distributed data. The proposed method is based on theory given in Fraser et al. (Biometrika 86:249–264, 1999) which involves implicit but appropriate conditioning and marginalization. Monte Carlo simulations are used to illustrate the accuracy of the proposed method.  相似文献   

13.
This paper deals with the estimation of the stress–strength parameter R=P(Y<X), when X and Y are independent exponential random variables, and the data obtained from both distributions are progressively type-II censored. The uniformly minimum variance unbiased estimator and the maximum-likelihood estimator (MLE) are obtained for the stress–strength parameter. Based on the exact distribution of the MLE of R, an exact confidence interval of R has been obtained. Bayes estimate of R and the associated credible interval are also obtained under the assumption of independent inverse gamma priors. An extensive computer simulation is used to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose.  相似文献   

14.
The distributions of linear combinations, products and ratios of random variables arise in many areas of engineering. In this paper, the exact distributions of the linear combination α XY, the product |X Y| and the ratio |X/Y| are derived when X and Y are independent Laplace random variables. The Laplace distribution, being the oldest model for continuous data, has been one of the most popular models for measurement errors in engineering.  相似文献   

15.
We consider the problem of estimating R=P(Y<X) when X and Y are independent Burr-type X random variables. We assume that the sample from each population contains one spurious observation. Bayes estimates are derived for exchangeable and identifiable cases. Monte Carlo simulation is carried out to compare the bias and the expected loss of R.  相似文献   

16.
The profile likelihood of the reliability parameter θP(X < Y) or of the ratio of means, when X and Y are independent exponential random variables, has a simple analytical expression and is a powerful tool for making inferences. Inferences about θ can be given in terms of likelihood-confidence intervals with a simple algebraic structure even for small and unequal samples. The case of right censored data can also be handled in a simple way. This is in marked contrast with the complicated expressions that depend on cumbersome numerical calculations of multidimensional integrals required to obtain asymptotic confidence intervals that have been traditionally presented in scientific literature.  相似文献   

17.
In this study, the performances of linear regression techniques, which are especially used in clinical chemistry in method comparison studies, are compared via the Monte-Carlo simulation. The regression techniques that take the measurement errors of both dependent and independent variables into account are called Type II regression techniques. In this study, we also compare the performances of Type II and Type I (classical regression techniques that do not take the measurement errors of the independent variable into account) regression techniques for different sample sizes and different shape parameters of the Weibull distribution. The mean square error is used as a performance criterion of each technique. MATLAB 7.02 software is used in the simulation study. As a result, in all conditions, the ordinary least-square (OLS)-bisector regression technique, which bisects the OLS(Y | X) and the OLS(X | Y), shows the best performance.  相似文献   

18.
This article studies the estimation of R = P[X < Y] when X and Y are two independent skew normal distribution with different parameters. When the scale parameter is unknown, the maximum likelihood estimator of R is proposed. The maximum likelihood estimator, uniformly minimum variance unbiased estimator, Bayes estimation, and confidence interval of R are obtained when the common scale parameter is known. In the general case, the maximum likelihood estimator of R is also discussed. To compare the different proposed methods, Monte Carlo simulations are performed. At last, the analysis of a real dataset has been presented for illustrative purposes too.  相似文献   

19.
This study examines the effects of calibration errors on model assumptions and data-analytic tools in direct calibration assays. These effects encompass induced dependencies, inflated variances, and heteroscedasticity among the calibrated measurements, whose distributions arise as mixtures. These anomalies adversely affect conventional inferences, including the inconsistency of sample means; the underestimation of measurement variance; and the distributions of sample means, sample variances, and student's t as mixtures. Inferences in comparative experiments remain largely intact, although error mean squares continue to underestimate the measurement variances. These anomalies are masked in practice, as conventional diagnostics cannot discern the irregularities induced through calibration. Case studies illustrate the principal issues.  相似文献   

20.
Let (X i , Y i ), i = 1, 2,…, n be independent and identically distributed random variables from some continuous bivariate distribution. If X (r) denotes the rth-order statistic, then the Y's associated with X (r) denoted by Y [r] is called the concomitant of the rth-order statistic. In this article, we derive an analytical expression of Shannon entropy for concomitants of order statistics in FGM family. Applying this expression for some well-known distributions of this family, we obtain the exact form of Shannon entropy, some of the information properties, and entropy bounds for concomitants of order statistics. Some comparisons are also made between the entropy of order statistics X (r) and the entropy of its concomitants Y [r]. In this family, we show that the mutual information between X (r) and Y [r], and Kullback–Leibler distance among the concomitants of order statistics are all distribution-free. Also, we compare the Pearson correlation coefficient between X (r) and Y [r] with the mutual information of (X (r), Y [r]) for the copula model of FGM family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号