首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the effects of calibration errors on model assumptions and data-analytic tools in direct calibration assays. These effects encompass induced dependencies, inflated variances, and heteroscedasticity among the calibrated measurements, whose distributions arise as mixtures. These anomalies adversely affect conventional inferences, including the inconsistency of sample means; the underestimation of measurement variance; and the distributions of sample means, sample variances, and student's t as mixtures. Inferences in comparative experiments remain largely intact, although error mean squares continue to underestimate the measurement variances. These anomalies are masked in practice, as conventional diagnostics cannot discern the irregularities induced through calibration. Case studies illustrate the principal issues.  相似文献   

2.
In this article, we consider a family of linear calibration estimators arising from inverse estimator and analyze its properties employing the small disturbance asymptotic theory. The asymptotic approximations for bias and mean squared error of this family are compared with the corresponding results for classical and inverse estimators, whose properties are also compared.  相似文献   

3.
Guimei Zhao 《Statistics》2017,51(3):609-614
In this paper, we deal with the hypothesis testing problems for the univariate linear calibration, where a normally distributed response variable and an explanatory variable are involved, and the observations of the response variable corresponding to known values of the explanatory variable are used for making inferences concerning a single unknown value of the explanatory variable. The uniformly most powerful unbiased tests for both one-sided and two-sided hypotheses are constructed and verified. The power behaviour of the proposed tests is numerically compared with that of the existing method, and simulations show that the proposed tests make the powers improved.  相似文献   

4.
In this article, we focus on the one-sided hypothesis testing for the univariate linear calibration, where a normally distributed response variable and an explanatory variable are involved. The observations of the response variable corresponding to known values of the explanatory variable are used to make inferences on a single unknown value of the explanatory variable. We apply the generalized inference to the calibration problem, and take the generalized p-value as the test statistic to develop a new p-value for one-sided hypothesis testing, which we refer to as the one-sided posterior predictive p-value. The behavior of the one-sided posterior predictive p-value is numerically compared with that of the generalized p-value, and simulations show that the proposed p-value is quite satisfactory in the frequentist performance.  相似文献   

5.
6.
In this work we propose and analyze non linear mixed-effects models for longitudinal data, which are widely used in the fields of economics, biopharmaceuticals, agriculture, and so on. A robust method to obtain maximum likelihood estimates for the parameters is presented, as well as perturbation diagnostics of autocorrelation coefficient in non linear models based on robust estimates and influence curvature. The obtained results are illustrated by plasma concentrations data presented in Davidian and Giltinan, which was analyzed under the non robust situation.  相似文献   

7.
In this paper the most commonly used diagnostic criteria for the identification of outliers or leverage points in the ordinary regression model are reviewed. Their use in the context of the errors-in-variables (e.v.) linear model is discussed and evidence is given that under the e.v. model assumptions the distinction between outliers and leverage points no longer exists.  相似文献   

8.
In multiple linear regression analysis, each observation affects the fitted regression equation differently and has varying influences on the regression coefficients of the different variables. Chatterjee & Hadi (1988) have proposed some measures such as DSSEij (Impact on Residual Sum of Squares of simultaneously omitting the ith observation and the jth variable), Fj (Partial F-test for the jth variable) and Fj(i) (Partial F-test for the jth variable omitting the ith observation) to show the joint impact and the interrelationship that exists among a variable and an observation. In this paper we have proposed more extended form of those measures DSSEIJ, FJ and FJ(I) to deal with the interrelationships that exist among the multiple observations and a subset of variables by monitoring the effects of the simultaneous omission of multiple variables and multiple observations.  相似文献   

9.
The problem of statistical calibration of a measuring instrument can be framed both in a statistical context as well as in an engineering context. In the first, the problem is dealt with by distinguishing between the ‘classical’ approach and the ‘inverse’ regression approach. Both of these models are static models and are used to estimate exact measurements from measurements that are affected by error. In the engineering context, the variables of interest are considered to be taken at the time at which you observe it. The Bayesian time series analysis method of Dynamic Linear Models can be used to monitor the evolution of the measures, thus introducing a dynamic approach to statistical calibration. The research presented employs a new approach to performing statistical calibration. A simulation study in the context of microwave radiometry is conducted that compares the dynamic model to traditional static frequentist and Bayesian approaches. The focus of the study is to understand how well the dynamic statistical calibration method performs under various signal-to-noise ratios, r.  相似文献   

10.
11.
The linear calibration problem is considered. An exact formula for the mean squared error of the inverse estimator, involving expectations of functions of a Poisson random variable, is derived. The formula may be expressed in closed form if the number of observations in the calibration experiment is odd; for an even number of observations, the numerical evaluation of a simple integral or the use of a standard table of the confluent hypergeometric function is required. Previous expressions for the mean squared error have either been asymptotic expansions or estimates obtained by simulation.  相似文献   

12.
Double hierarchical generalized linear models (with discussion)   总被引:2,自引:0,他引:2  
Summary.  We propose a class of double hierarchical generalized linear models in which random effects can be specified for both the mean and dispersion. Heteroscedasticity between clusters can be modelled by introducing random effects in the dispersion model, as is heterogeneity between clusters in the mean model. This class will, among other things, enable models with heavy-tailed distributions to be explored, providing robust estimation against outliers. The h -likelihood provides a unified framework for this new class of models and gives a single algorithm for fitting all members of the class. This algorithm does not require quadrature or prior probabilities.  相似文献   

13.
The inactivity time, also known as reversed residual life, has been a topic of increasing interest in the literature. In this investigation, based on the comparison of inactivity times of two devices, we introduce and study a new estimate of the probability of the inactivity time of one device exceeding that of another device. The problem studied in this paper is important for engineers and system designers. It would enable them to compare the inactivity times of the products and, hence to design better products. Several properties of this probability are established. Connections between the target probability and the reversed hazard rates of the two devices are established. In addition, some of the reliability properties of the new concept are investigated extending the well-known probability ordering. Finally, to illustrate the introduced concepts, many examples and applications in the context of reliability theory are included.  相似文献   

14.
Consider a vector valued response variable related to a vector valued explanatory variable through a normal multivariate linear model. The multivariate calibration problem deals with statistical inference on unknown values of the explanatory variable. The problem addressed is the construction of joint confidence regions for several unknown values of the explanatory variable. The problem is investigated when the variance covariance matrix is a scalar multiple of the identity matrix and also when it is a completely unknown positive definite matrix. The problem is solved in only two cases: (i) the response and explanatory variables have the same dimensions, and (ii) the explanatory variable is a scalar. In the former case, exact joint confidence regions are derived based on a natural pivot statistic. In the latter case, the joint confidence regions are only conservative. Computational aspects and the practical implementation of the confidence regions are discussed and illustrated using an example.  相似文献   

15.
This paper deals with the estimation of reliability R = P(Y < X) when X is a random strength of a component subjected to a random stress Y, and (X, Y) follows a bivariate Rayleigh distribution. The maximum likelihood estimator of R and its asymptotic distribution are obtained. An asymptotic confidence interval of R is constructed using the asymptotic distribution. Also, two confidence intervals are proposed based on Bootstrap method and a computational approach. Testing of the reliability based on asymptotic distribution of R is discussed. Simulation study to investigate performance of the confidence intervals and tests has been carried out. Also, a numerical example is given to illustrate the proposed approaches.  相似文献   

16.
In this paper, the exact distribution of Wilks' likelihood ratio criterion, A, for MANOVA, in the complex case when the alternate hypothesis is of unit rank (i.e. the linear case) has been derived and the explicit expressions for the same for p = 2 and 3 (where p is the number of variates) and general f1 (the error degrees of freedom) and f2 (the hypothesis degrees of freedom), are given. For an unrestricted number of variables, a general form of the density and the distribution of A in this case, is also given. It has been shown that the total integral of the series obtained by taking a few terms only, rapidly approaches the theoretical value one as more terms are taken into account, and some percentage points have also been computed.  相似文献   

17.
This contribution deals with the statistical problem of evaluating the stress–strength reliability parameter R = P(X < Y), when both stress and strength data are prone to contamination. Standard likelihood inference can be badly affected by mild data inadequacies, that often occur in the form of several outliers. Then, robust tools are recommended. Here, inference relies on the weighted likelihood methodology. This approach has the advantage to lead to robust estimators, tests, and confidence intervals that share the main asymptotic properties of their classical counterparts. The accuracy of the proposed methodology is illustrated both by numerical studies and real-data applications.  相似文献   

18.
In the literature, assuming independence of random variables X and Y, statistical estimation of the stress–strength parameter R = P(X > Y) is intensively investigated. However, in some real applications, the strength variable X could be highly dependent on the stress variable Y. In this paper, unlike the common practice in the literature, we discuss on estimation of the parameter R where more realistically X and Y are dependent random variables distributed as bivariate Rayleigh model. We derive the Bayes estimates and highest posterior density credible intervals of the parameters using suitable priors on the parameters. Because there are not closed forms for the Bayes estimates, we will use an approximation based on Laplace method and a Markov Chain Monte Carlo technique to obtain the Bayes estimate of R and unknown parameters. Finally, simulation studies are conducted in order to evaluate the performances of the proposed estimators and analysis of two data sets are provided.  相似文献   

19.
The general mixed linear model, containing both the fixed and random effects, is considered. Using gamma priors for the variance components, the conditional posterior distributions of the fixed effects and the variance components, conditional on the random effects, are obtained. Using the normal approximation for the multiple t distribution, approximations are obtained for the posterior distributions of the variance components in infinite series form. The same approximation Is used to obtain closed expressions for the moments of the variance components. An example is considered to illustrate the procedure and a numerical study examines the closeness of the approximations.  相似文献   

20.
The present article considers the Pitman Closeness (PC) criterion of certain hierarchical Bayes (HB) predictors derived under a normal mixed linear models for known ratios of variance components using a uniform prior for the vector of fixed effects and some proper or improper prior on the error variance. For a generalized Euclidean error, simultaneous HB predictors of several linear combinations of vector of effects are shown to be the Pitman-closest in the frequentist sense in the class of equivariant predictors for location group of transformations. The normality assumption can be relaxed to show that these HB predictors are the Pitman-closest for location-scale group of transformations for a wider family of elliptically symmetric distributions. Also for this family, the HB predictors turn out to be Pitman-closest in the class of all linear unbiased predictors (LUPs). All these results are extended for the HB predictor of finite population mean vector in the context of finite population sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号