首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inverse Gaussian (IG) distribution, also known as the Wald distribution, is a long-tailed positively skewed distribution and a well-known lifetime distribution. In this paper, we propose an efficient method of estimation for the parameters and quantiles of the three-parameter IG distribution, which is based on statistics invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared with other prominent methods in terms of bias and variance. Finally, we present two illustrative examples.  相似文献   

2.
Lognormal distribution is one of the popular distributions used for modelling positively skewed data, especially those encountered in economic and financial data. In this paper, we propose an efficient method for the estimation of parameters and quantiles of the three-parameter lognormal distribution, which avoids the problem of unbounded likelihood, by using statistics that are invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared to other prominent methods in terms of both bias and mean-squared error. Finally, we present two illustrative examples.  相似文献   

3.
In this work, we propose a consistent method of estimation for the parameters of the three-parameter lognormal distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of estimation proposed.  相似文献   

4.
A simulation experiment compares the accuracy and precision of three alternate estimation techniques for the parameters of the STARMA model. Maximum likelihood estimation, in most ways the "best" estimation procedure, involves a large amount of computational effort so that two approximate techniques, exact least squares and conditional maximum likelihood, are often proposed for series of moderate lengths. This simulation experiment compares the accuracy of these three estimation procedures for simulated series of various lengths, and discusses the appropriateness of the three procedures as a function of the length of the observed series.  相似文献   

5.
The three-parameter inverse Gaussian distribution is defined and moment estimators and maximum likelihood estimators are obtained. The moment estimators are found in closed form and their asymprotic normality is proven. A sufficient condition is provided for the existence of the maximum likelihood estimators.  相似文献   

6.
In this paper, we propose a method of estimation of parameters and quantiles of the three-parameter gamma distribution based on Type-II right-censored data. In the proposed method, under mild conditions, the estimates always exist uniquely, and the estimators have consistency over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method performs well compared with another prominent method of estimation in terms of bias and root mean-squared error in small-sample situations. Finally, two real data sets are used for illustrating the proposed method.  相似文献   

7.
A class of goodness-of-fit estimators is found to provide a useful alternative in certain situations to the standard maximum likelihood method which has some undesirable estimation characteristics for estimation from the three-parameter lognormal distribution. The class of goodness-of-fit tests considered include the Shapiro-Wilk and Filliben tests which reduce to a weighted linear combination of the order statistics that can be maximized in estimation problems. The weighted order statistic estimators are compared to the standard procedures in Monte Carlo simulations. Robustness of the procedures are examined and example data sets analyzed.  相似文献   

8.
ABSTRACT

In this paper, we propose a parameter estimation method for the three-parameter lognormal distribution based on Type-II right censored data. In the proposed method, under mild conditions, the estimates always exist uniquely in the entire parameter space, and the estimators also have consistency over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method performs very well compared to a prominent method of estimation in terms of bias and root mean squared error (RMSE) in small-sample situations. Finally, two examples based on real data sets are presented for illustrating the proposed method.  相似文献   

9.
We develop estimates for the parameters of the Dirichlet-multinomial distribution (DMD) when there is insufficient data to obtain maximum likelihood or method of moment estimates known in the literature. We do, however, have supplemetary beta-binomial data pertaining to the marginals of the DMD, and use these data when estimating the DMD parameters. A real situation and data set are given where our estimates are applicable.  相似文献   

10.
Bimodal mixture Weibull distribution being a special case of mixture Weibull distribution has been used recently as a suitable model for heterogeneous data sets in many practical applications. The bimodal mixture Weibull term represents a mixture of two Weibull distributions. Although many estimation methods have been proposed for the bimodal mixture Weibull distribution, there is not a comprehensive comparison. This paper presents a detailed comparison of five kinds of numerical methods, such as maximum likelihood estimation, least-squares method, method of moments, method of logarithmic moments and percentile method (PM) in terms of several criteria by simulation study. Also parameter estimation methods are applied to real data.  相似文献   

11.
A method of centres algorithm for maximum likelihood estimation in the three-parameter lognormal model is presented and discussed, The algorithm is a member of the class of moving truncations algorithms for solving nonlinear programming problems and is able to move the numerical search out of the region of the infinite maximum of the conditional likelihood function, thereby permitting convergence to an interior relative maximum of this function. The algorithm also includes an optimality test to locate the primary relative maximum of the likelihood function.  相似文献   

12.
The three-parameter gamma distribution is widely used as a model for distributions of life spans, reaction times, and for other types of skewed data. In this paper, we propose an efficient method of estimation for the parameters and quantiles of the three-parameter gamma distribution, which avoids the problem of unbounded likelihood, based on statistics invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared to other prominent methods in terms of bias and mean squared error. Finally, we present two illustrative examples.  相似文献   

13.
The parameters and quantiles of the three-parameter generalized Pareto distribution (GPD3) were estimated using six methods for Monte Carlo generated samples. The parameter estimators were the moment estimator and its two variants, probability-weighted moment estimator, maximum likelihood estimator, and entropy estimator. Parameters were investigated using a factorial experiment. The performance of these estimators was statistically compared, with the objective of identifying the most robust estimator from amongst them.  相似文献   

14.
The likelihood ratio test (LRT) for the mean direction in the von Mises distribution is modified for possessing a common asymptotic distribution both for large sample size and for large concentration parameter. The test statistic of the modified LRT is compared with the F distribution but not with the chi-square distribution usually employed, Good performances of the modified LRT are shown by analytical studies and Monte Carlo simulation studies, A notable advantage of the test is that it takes part in the unified likelihood inference procedures including both the marginal MLE and the marginal LRT for the concentration parameter.  相似文献   

15.
In this article, we investigate the potential usefulness of the three-parameter transmuted Weibull distribution for modeling survival data. The main advantage of this distribution is that it has increasing, decreasing or constant instantaneous failure rate depending on the shape parameter and the new transmuting parameter. We obtain several mathematical properties of the transmuted Weibull distribution such as the expressions for the quantile function, moments, geometric mean, harmonic mean, Shannon, Rényi and q-entropies, mean deviations, Bonferroni and Lorenz curves, and the moments of order statistics. We propose a location-scale regression model based on the log-transmuted Weibull distribution for modeling lifetime data. Applications to two real datasets are given to illustrate the flexibility and potentiality of the transmuted Weibull family of lifetime distributions.  相似文献   

16.
17.
The asymptotic distribution of estimators generated by the methods of moments and maximum likelihood are considered. Simple formulae are provided which enable comparisons of asymptotic relative efficiency to be effected.  相似文献   

18.
Various classical methods of estimation are compared with those proposed by From (1989) for the estimation of the mixing parameter in a mixture of two distributions. Emphasis is put on the actual implementation of the estimation methods.  相似文献   

19.
In this paper, the estimation of parameters for a three-parameter Weibull distribution based on progressively Type-II right censored sample is studied. Different estimation procedures for complete sample are generalized to the case with progressively censored data. These methods include the maximum likelihood estimators (MLEs), corrected MLEs, weighted MLEs, maximum product spacing estimators and least squares estimators. We also proposed the use of a censored estimation method with one-step bias-correction to obtain reliable initial estimates for iterative procedures. These methods are compared via a Monte Carlo simulation study in terms of their biases, root mean squared errors and their rates of obtaining reliable estimates. Recommendations are made from the simulation results and a numerical example is presented to illustrate all of the methods of inference developed here.  相似文献   

20.
This paper introduces a new four-parameter lifetime model called the Weibull Burr XII distribution. The new model has the advantage of being capable of modeling various shapes of aging and failure criteria. We derive some of its structural properties including ordinary and incomplete moments, quantile and generating functions, probability weighted moments, and order statistics. The new density function can be expressed as a linear mixture of Burr XII densities. We propose a log-linear regression model using a new distribution so-called the log-Weibull Burr XII distribution. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimation are discussed. We prove empirically the importance and flexibility of the new model in modeling various types of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号