首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the reliability of highly reliable products that have two or more performance characteristics (PCs) in an accurate manner, relations between the PCs should be taken duly into account. If they are not independent, it would then become important to describe the dependence of the PCs. For many products, the constant-stress degradation test cannot provide sufficient data for reliability evaluation and for this reason, accelerated degradation test is usually performed. In this article, we assume that a product has two PCs and that the PCs are governed by a Wiener process with a time scale transformation, and the relationship between the PCs is described by the Frank copula function. The copula parameter is dependent on stress and assumed to be a function of stress level that can be described by a logistic function. Based on these assumptions, a bivariate constant-stress accelerated degradation model is proposed here. The direct likelihood estimation of parameters of such a model becomes analytically intractable, and so the Bayesian Markov chain Monte Carlo (MCMC) method is developed here for this model for obtaining the maximum likelihood estimates (MLEs) efficiently. For an illustration of the proposed model and the method of inference, a simulated example is presented along with the associated computational results.  相似文献   

2.
The issue of residual life (RL) estimation plays an important role for products while they are in use, especially for expensive and reliability-critical products. For many products, they may have two or more performance characteristics (PCs). Here, an adaptive method of RL estimation based on bivariate Wiener degradation process with time-scale transformations is presented. It is assumed that a product has two PCs, and that each PC is governed by a Wiener process with a time-scale transformation. The dependency of PCs is characterized by the Frank copula function. Parameters are estimated by using the Bayesian Markov chain Monte Carlo method. Once new degradation information is available, the RL is re-estimated in an adaptive manner. A numerical example about fatigue cracks is given to demonstrate the usefulness and validity of the proposed method.  相似文献   

3.
In this paper, we consider that the degradation of two performance characteristics of a product can be modelled by stochastic processes and jointly by copula functions, but different stochastic processes govern the behaviour of each performance characteristic (PC) degradation. Different heterogeneous and homogeneous models are presented considering copula functions and different combinations of the most used stochastic processes in degradation analysis as marginal distributions. This is an important aspect to consider because the behaviour of the degradation of each PC may be different in its nature. As the joint distributions of the proposed models result in complex distributions, the estimation of the parameters of interest is performed via MCMC. A simulation study is performed to compare heterogeneous and homogeneous models. In addition, the proposed models are implemented to crack propagation data of two terminals of an electronic device, and some insights are provided about the product reliability under heterogeneous models.  相似文献   

4.
Due to the growing importance in maintenance scheduling, the issue of residual life (RL) estimation for some high reliable products based on degradation data has been studied quite extensively. However, most of the existing work only deals with one-dimensional degradation data, which may not be realistic in some cases. Here, an adaptive method of RL estimation is developed based on two-dimensional degradation data. It is assumed that a product has two performance characteristics (PCs) and that the degradation of each PC over time is governed by a non-stationary gamma degradation process. From a practical consideration, it is further assumed that these two PCs are dependent and that their dependency can be characterized by a copula function. As the likelihood function in such a situation is complicated and computationally quite intensive, a two-stage method is used to estimate the unknown parameters of the model. Once new degradation information of the product being monitored becomes available, random effects are first updated by using the Bayesian method. Following that, the RL at current time is estimated accordingly. As the degradation data information accumulates, the RL can be re-estimated in an adaptive manner. Finally, a numerical example about fatigue cracks is presented in order to illustrate the proposed model and the developed inferential method.  相似文献   

5.
For some operable products with critical reliability constraints, it is important to estimate accurately their residual lives so that maintenance actions can be arranged suitably and efficiently. In the literature, most publications have dealt with this issue by only considering one-dimensional degradation data. However, this may be not reasonable in situations wherein a product may have two or more performance characteristics (PCs). In such situations, multi-dimensional degradation data should be taken into account. Here, for the target product with multivariate PCs, methods of residual life (RL) estimation are developed. This is done with the assumption that the degradation of PCs over time is governed by a multivariate Wiener process with nonlinear drifts. Both the population-based degradation information and the degradation history of the target product up-to-date are combined to estimate the RL of the product. Specifically, the population-based degradation information is first used to obtain the estimates of the unknown parameters of the model through the EM algorithm. Then, the degradation history of the target product is adopted to update the degradation model, based on which the RL is estimated accordingly. To illustrate the validity and the usefulness of the proposed method, a numerical example about fatigue cracks is finally presented and analysed.  相似文献   

6.
This article conducts a Bayesian analysis for bivariate degradation models based on the inverse Gaussian (IG) process. Assume that a product has two quality characteristics (QCs) and each of the QCs is governed by an IG process. The dependence of the QCs is described by a copula function. A bivariate simple IG process model and three bivariate IG process models with random effects are investigated by using Bayesian method. In addition, a simulation example is given to illustrate the effectiveness of the proposed methods. Finally, an example about heavy machine tools is presented to validate the proposed models.  相似文献   

7.
在非寿险损失预测的广义线性模型中,通常假设损失次数与损失强度相互独立,事实上二者之间往往存在一定的相依关系,可通过copula函数来刻画.在损失已经发生的条件下,假设损失次数服从零截断泊松分布,损失强度服从伽玛分布,可以建立损失次数与损失强度相互依赖的copula回归模型.把损失强度的分布扩展到逆高斯分布,并将此模型应用于一组车险保单数据进行实证研究.结果表明:该模型不但在损失预测方面优于独立假设下的广义线性模型,而且也优于损失强度服从伽马分布假设下的copula回归模型.  相似文献   

8.
Abstract

Many engineering systems have multiple components with more than one degradation measure which is dependent on each other due to their complex failure mechanisms, which results in some insurmountable difficulties for reliability work in engineering. To overcome these difficulties, the system reliability prediction approaches based on performance degradation theory develop rapidly in recent years, and show their superiority over the traditional approaches in many applications. This paper proposes reliability models of systems with two dependent degrading components. It is assumed that the degradation paths of the components are governed by gamma processes. For a parallel system, its failure probability function can be approximated by the bivariate Birnbaum–Saunders distribution. According to the relationship of parallel and series systems, it is easy to find that the failure probability function of a series system can be expressed by the bivariate Birnbaum–Saunders distribution and its marginal distributions. The model in such a situation is very complicated and analytically intractable, and becomes cumbersome from a computational viewpoint. For this reason, the Bayesian Markov chain Monte Carlo method is developed for this problem that allows the maximum likelihood estimates of the parameters to be determined in an efficient manner. After that, the confidence intervals of the failure probability of systems are given. For an illustration of the proposed model, a numerical example about railway track is presented.  相似文献   

9.
For multivariate probit models, Spiess and Tutz suggest three alternative performance measures, which are all based on the decomposition of the variation. The multivariate probit model can be seen as a special case of the discrete copula model. This paper proposes some new measures based on the value of the likelihood function and the prediction-realization table. In addition, it generalizes the measures from Spiess and Tutz for the discrete copula model. Results of a simulation study designed to compare the different measures in various situations are presented.  相似文献   

10.
Step-stress accelerated degradation test (SSADT) plays an important role in assessing the lifetime distribution of highly reliable products under normal operating conditions when there are not enough test units available for testing purposes. Recently, the optimal SSADT plans are presented based on an underlying assumption that there is only one performance characteristic. However, many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. At the same time, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and nonnegative increments properties. Therefore, it is of great interest to design an efficient SSADT plan for the products with multiple performance characteristics based on gamma processes. In this work, we first introduce reliability model of the degradation products with two performance characteristics based on gamma processes, and then present the corresponding SSADT model. Next, under the constraint of total experimental cost, the optimal settings such as sample size, measurement times, and measurement frequency are obtained by minimizing the asymptotic variance of the estimated 100 qth percentile of the product’s lifetime distribution. Finally, a numerical example is given to illustrate the proposed procedure.  相似文献   

11.
Independent censoring is commonly assumed in survival analysis. However, it may be questionable when censoring is related to event time. We model the event and censoring time marginally through accelerated failure time models, and model their association by a known copula. An iteration algorithm is proposed to estimate the regression parameters. Simulation results show the improvement of the proposed method compared to the naive method under independent censoring. Sensitivity analysis gives the evidences that the proposed method can obtain reasonable estimates even when the forms of copula are misspecified. We illustrate its application by analyzing prostate cancer data.  相似文献   

12.
A common method of estimating the parameters of dependency in multivariate copula models is by maximum likelihood principle, termed as Inference From Marginals (IFM); see Joe (1997)  [13]. To avoid possible misspecification of the marginal distributions, some authors suggest rank-based procedures for estimating the parameters of dependency in a multivariate copula model. A standard approach for this problem is through maximization of the pseudolikelihood, as discussed in Genest et al. (1995)  [9] and Shih and Louis (1995)  [23]. Alternative estimators based on the inversion of two multivariate extensions of Kendall’s tau, due to Kendall and Babington Smith (1940)  [14] and Joe (1990)  [12], were used in Genest et al. (2011)  [10]. In the literature, dependency of data was considered in the whole data space. However, it may be better to divide the data set into two distinct sets, lower and higher than a threshold, and then evaluate the dependency parameters in these sets. In this way, we may have different dependency parameters in these sets which may shed additional light. For example, in drought analysis, precipitation and minimum temperature may be modeled using copulas in which case we can infer that dependency between precipitation and minimum temperature are severe when they are less than a certain threshold. In this paper, after introducing trimmed Kendall’s tau when such a threshold is imposed, we consider modeling dependency using it as a measure. Asymptotic distribution of trimmed Kendall’s tau is also investigated, and a test for the null hypothesis of equality between Kendall’s tau and trimmed Kendall’s tau is constructed. We can use this hypothesis testing procedure for testing the hypothesis that data are dependent before a threshold value and are independent after the threshold. An explicit form of the asymptotic distribution of trimmed Kendall’s tau and of the mentioned test statistic are also derived for some special families of copulas. Finally, the results of a simulation study and an illustrative example are provided.  相似文献   

13.
A meta-elliptical model is a distribution function whose copula is that of an elliptical distribution. The tail dependence function in such a bivariate model has a parametric representation with two parameters: a tail parameter and a correlation parameter. The correlation parameter can be estimated by robust methods based on the whole sample. Using the estimated correlation parameter as plug-in estimator, we then estimate the tail parameter applying a modification of the method of moments approach proposed in the paper by Einmahl et al. (2008). We show that such an estimator is consistent and asymptotically normal. Further, we derive the joint limit distribution of the estimators of the two parameters. We illustrate the small sample behavior of the estimator of the tail parameter by a simulation study and on real data, and we compare its performance to that of the competitive estimators.  相似文献   

14.
Nonparametric estimation of current status data with dependent censoring   总被引:1,自引:0,他引:1  
This paper discusses nonparametric estimation of a survival function when one observes only current status data (McKeown and Jewell, Lifetime Data Anal 16:215-230, 2010; Sun, The statistical analysis of interval-censored failure time data, 2006; Sun and Sun, Can J Stat 33:85-96, 2005). In this case, each subject is observed only once and the failure time of interest is observed to be either smaller or larger than the observation or censoring time. If the failure time and the observation time can be assumed to be independent, several methods have been developed for the problem. Here we will focus on the situation where the independent assumption does not hold and propose two simple estimation procedures under the copula model framework. The proposed estimates allow one to perform sensitivity analysis or identify the shape of a survival function among other uses. A simulation study performed indicates that the two methods work well and they are applied to a motivating example from a tumorigenicity study.  相似文献   

15.
Copula models for multivariate lifetimes have become widely used in areas such as biomedicine, finance and insurance. This paper fills some gaps in existing methodology for copula parameters and model assessment. We consider procedures based on likelihood and pseudolikelihood ratio statistics and introduce semiparametric maximum likelihood estimation leading to semiparametric versions. For cases where standard asymptotic approximations do not hold, we propose an efficient simulation technique for obtaining p-values. We apply these methods to tests for a copula model, based on embedding it in a larger copula family. It is shown that the likelihood and pseudolikelihood ratio tests are consistent even when the expanded copula model is misspecified. Power comparisons with two other tests of fit indicate that model expansion provides a convenient, powerful and robust approach. The methods are illustrated on an application concerning the time to loss of vision in the two eyes of an individual.  相似文献   

16.
For some highly reliable products, degradation data have been studied quite extensively to evaluate their reliability characteristics. However, the accuracy of evaluation results depends strongly on the suitability of the proposed degradation model for capturing the degradation over time. If the degradation model is mis-specified, it may result in inaccurate results. In this work, we focus on the issue of model mis-specification between nonlinear Wiener process-based degradation models in which both the product-to-product variability and the temporal uncertainty of the degradation can be considered simultaneously with the nonlinearity in degradation paths. Specifically, a generalized Wiener process-based degradation model is wrongly fitted by its two limiting cases. The effects of model mis-specification in such situations on the MTTF (mean-time-to-failure) of the product are measured with the relative bias and the relative variability. Results from a numerical example concerning fatigue cracks show that the effect of mis-specification is serious under some parameter settings, i.e., the relative bias departs from 0, and the relative variability significantly departs from 1, if the generalized Wiener degradation process is wrongly assumed to be its limiting cases.  相似文献   

17.
While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis–Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology.  相似文献   

18.
In this paper, we introduce a bivariate Kumaraswamy (BVK) distribution whose marginals are Kumaraswamy distributions. The cumulative distribution function of this bivariate model has absolutely continuous and singular parts. Representations for the cumulative and density functions are presented and properties such as marginal and conditional distributions, product moments and conditional moments are obtained. We show that the BVK model can be obtained from the Marshall and Olkin survival copula and obtain a tail dependence measure. The estimation of the parameters by maximum likelihood is discussed and the Fisher information matrix is determined. We propose an EM algorithm to estimate the parameters. Some simulations are presented to verify the performance of the direct maximum-likelihood estimation and the proposed EM algorithm. We also present a method to generate bivariate distributions from our proposed BVK distribution. Furthermore, we introduce a BVK distribution which has only an absolutely continuous part and discuss some of its properties. Finally, a real data set is analysed for illustrative purposes.  相似文献   

19.
For reliability-critical and expensive products, it is necessary to estimate their residual lives based on available information, such as the degradation data, so that proper maintenance actions can be arranged to reduce or even avoid the occurrence of failures. In this work, by assuming that the product-to-product variability of the degradation is characterized by a skew-normal distribution, a generalized Wiener process-based degradation model is developed. Following that, the issue of residual life (RL) estimation of the target product is addressed in detail. The proposed degradation model provides greater flexibility to capture a variety of degradation processes, since several commonly used Wiener process-based degradation models can be seen as special cases. Through the EM algorism, the population-based degradation information is used to estimate the parameters of the model. Whenever new degradation measurement information of the target product becomes available, the degradation model is first updated based on the Bayesian method. In this way, the RL of the target product can be estimated in an adaptive manner. Finally, the developed methodology is demonstrated by a simulation study.  相似文献   

20.
In financial analysis it is useful to study the dependence between two or more time series as well as the temporal dependence in a univariate time series. This article is concerned with the statistical modeling of the dependence structure in a univariate financial time series using the concept of copula. We treat the series of financial returns as a first order Markov process. The Archimedean two-parameter BB7 copula is adopted to describe the underlying dependence structure between two consecutive returns, while the log-Dagum distribution is employed to model the margins marked by skewness and kurtosis. A simulation study is carried out to evaluate the performance of the maximum likelihood estimates. Furthermore, we apply the model to the daily returns of four stocks and, finally, we illustrate how its fitting to data can be improved when the dependence between consecutive returns is described through a copula function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号