首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.  相似文献   

2.
This paper presents a robust probabilistic mixture model based on the multivariate skew-t-normal distribution, a skew extension of the multivariate Student’s t distribution with more powerful abilities in modelling data whose distribution seriously deviates from normality. The proposed model includes mixtures of normal, t and skew-normal distributions as special cases and provides a flexible alternative to recently proposed skew t mixtures. We develop two analytically tractable EM-type algorithms for computing maximum likelihood estimates of model parameters in which the skewness parameters and degrees of freedom are asymptotically uncorrelated. Standard errors for the parameter estimates can be obtained via a general information-based method. We also present a procedure of merging mixture components to automatically identify the number of clusters by fitting piecewise linear regression to the rescaled entropy plot. The effectiveness and performance of the proposed methodology are illustrated by two real-life examples.  相似文献   

3.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

4.
A method is suggested to estimate posterior model probabilities and model averaged parameters via MCMC sampling under a Bayesian approach. The estimates use pooled output for J models (J>1) whereby all models are updated at each iteration. Posterior probabilities are based on averages of continuous weights obtained for each model at each iteration, while samples of averaged parameters are obtained from iteration specific averages that are based on these weights. Parallel sampling of models assists in deriving posterior densities for parameter contrasts between models and in assessing hypotheses regarding model averaged parameters. Four worked examples illustrate application of the approach, two involving fixed effect regression, and two involving random effects.  相似文献   

5.
We propose a Bayesian nonparametric instrumental variable approach under additive separability that allows us to correct for endogeneity bias in regression models where the covariate effects enter with unknown functional form. Bias correction relies on a simultaneous equations specification with flexible modeling of the joint error distribution implemented via a Dirichlet process mixture prior. Both the structural and instrumental variable equation are specified in terms of additive predictors comprising penalized splines for nonlinear effects of continuous covariates. Inference is fully Bayesian, employing efficient Markov chain Monte Carlo simulation techniques. The resulting posterior samples do not only provide us with point estimates, but allow us to construct simultaneous credible bands for the nonparametric effects, including data-driven smoothing parameter selection. In addition, improved robustness properties are achieved due to the flexible error distribution specification. Both these features are challenging in the classical framework, making the Bayesian one advantageous. In simulations, we investigate small sample properties and an investigation of the effect of class size on student performance in Israel provides an illustration of the proposed approach which is implemented in an R package bayesIV. Supplementary materials for this article are available online.  相似文献   

6.
This paper deals with the problem of maximum likelihood estimation for a mixture of skew Student-t-normal distributions, which is a novel model-based tool for clustering heterogeneous (multiple groups) data in the presence of skewed and heavy-tailed outcomes. We present two analytically simple EM-type algorithms for iteratively computing the maximum likelihood estimates. The observed information matrix is derived for obtaining the asymptotic standard errors of parameter estimates. A small simulation study is conducted to demonstrate the superiority of the skew Student-t-normal distribution compared to the skew t distribution. The proposed methodology is particularly useful for analyzing multimodal asymmetric data as produced by major biotechnological platforms like flow cytometry. We provide such an application with the help of an illustrative example.  相似文献   

7.
ABSTRACT

This article considers nonparametric regression problems and develops a model-averaging procedure for smoothing spline regression problems. Unlike most smoothing parameter selection studies determining an optimum smoothing parameter, our focus here is on the prediction accuracy for the true conditional mean of Y given a predictor X. Our method consists of two steps. The first step is to construct a class of smoothing spline regression models based on nonparametric bootstrap samples, each with an appropriate smoothing parameter. The second step is to average bootstrap smoothing spline estimates of different smoothness to form a final improved estimate. To minimize the prediction error, we estimate the model weights using a delete-one-out cross-validation procedure. A simulation study has been performed by using a program written in R. The simulation study provides a comparison of the most well known cross-validation (CV), generalized cross-validation (GCV), and the proposed method. This new method is straightforward to implement, and gives reliable performances in simulations.  相似文献   

8.
Given time series data for fixed interval t= 1,2,…, M with non-autocorrelated innovations, the regression formulae for the best linear unbiased parameter estimates at each time t are given by the Kalman filter fixed interval smoothing equations. Formulae for the variance of such parameter estimates are well documented. However, formulae for covariance between these fixed interval best linear parameter estimates have previously been derived only for lag one. In this paper more general formulae for covariance between fixed interval best linear unbiased estimates at times t and t - l are derived for t= 1,2,…, M and l= 0,1,…, t - 1. Under Gaussian assumptions, these formulae are also those for the corresponding conditional covariances between the fixed interval best linear unbiased parameter estimates given the data to time M. They have application, for example, in determination via the expectation-maximisation (EM) algorithm of exact maximum likelihood parameter estimates for ARMA processes expressed in statespace form when multiple observations are available at each time point.  相似文献   

9.
The skew normal model is a class of distributions that extends the Gaussian family by including a shape parameter. Despite its nice properties, this model presents some problems with the estimation of the shape parameter. In particular, for moderate sample sizes, the maximum likelihood estimator is infinite with positive probability. As a solution, we use a modified score function as an estimating equation for the shape parameter. It is proved that the resulting modified maximum likelihood estimator is always finite. For confidence intervals a quasi-likelihood approach is considered. When regression and scale parameters are present, the method is combined with maximum likelihood estimators for these parameters. Finally, also the skew t distribution is considered, which may be viewed as an extension of the skew normal. The same method is applied to this model, considering the degrees of freedom as known.  相似文献   

10.
In this article, we propose mixtures of skew Laplace normal (SLN) distributions to model both skewness and heavy-tailedness in the neous data set as an alternative to mixtures of skew Student-t-normal (STN) distributions. We give the expectation–maximization (EM) algorithm to obtain the maximum likelihood (ML) estimators for the parameters of interest. We also analyze the mixture regression model based on the SLN distribution and provide the ML estimators of the parameters using the EM algorithm. The performance of the proposed mixture model is illustrated by a simulation study and two real data examples.  相似文献   

11.
Emrah Altun 《Statistics》2019,53(2):364-386
In this paper, we introduce a new distribution, called generalized Gudermannian (GG) distribution, and its skew extension for GARCH models in modelling daily Value-at-Risk (VaR). Basic structural properties of the proposed distribution are obtained including probability density and cumulative distribution functions, moments, and stochastic representation. The maximum likelihood method is used to estimate unknown parameters of the proposed model and finite sample performance of maximum likelihood estimates are evaluated by means of Monte-Carlo simulation study. The real data application on Nikkei 225 index is given to demonstrate the performance of GARCH model specified under skew extension of GG innovation distribution against normal, Student's-t, skew normal and generalized error and skew generalized error distributions in terms of the accuracy of VaR forecasts. The empirical results show that the GARCH model with GG innovation distribution produces the most accurate VaR forecasts for all confidence levels.  相似文献   

12.
Daniel Hohmann 《Statistics》2013,47(2):348-362
We consider a two-component location mixture model with symmetric components, one of which is assumed to be known, the other is unknown. We show identifiability under assumptions on the tails of the characteristic function for the true underlying mixture, and also construct asymptotically normal estimates. The model is an extension of the contamination model in Bordes et al. [Semiparametric estimation of a two-component mixture model when a component is known, Scand. J. Statist. 33 (2006), pp. 733–752], and also related to a location mixture of one symmetric density as in Bordes et al. [Semiparametric estimation of a two component mixture model, Ann. Statist. 34 (2006), pp. 1204–1232]. We show by simulation that estimating the additional location parameter leads to a slight loss of efficiency as compared with the contamination model.  相似文献   

13.
Inference for a generalized linear model is generally performed using asymptotic approximations for the bias and the covariance matrix of the parameter estimators. For small experiments, these approximations can be poor and result in estimators with considerable bias. We investigate the properties of designs for small experiments when the response is described by a simple logistic regression model and parameter estimators are to be obtained by the maximum penalized likelihood method of Firth [Firth, D., 1993, Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38]. Although this method achieves a reduction in bias, we illustrate that the remaining bias may be substantial for small experiments, and propose minimization of the integrated mean square error, based on Firth's estimates, as a suitable criterion for design selection. This approach is used to find locally optimal designs for two support points.  相似文献   

14.
The demand for reliable statistics in subpopulations, when only reduced sample sizes are available, has promoted the development of small area estimation methods. In particular, an approach that is now widely used is based on the seminal work by Battese et al. [An error-components model for prediction of county crop areas using survey and satellite data, J. Am. Statist. Assoc. 83 (1988), pp. 28–36] that uses linear mixed models (MM). We investigate alternatives when a linear MM does not hold because, on one side, linearity may not be assumed and/or, on the other, normality of the random effects may not be assumed. In particular, Opsomer et al. [Nonparametric small area estimation using penalized spline regression, J. R. Statist. Soc. Ser. B 70 (2008), pp. 265–283] propose an estimator that extends the linear MM approach to the case in which a linear relationship may not be assumed using penalized splines regression. From a very different perspective, Chambers and Tzavidis [M-quantile models for small area estimation, Biometrika 93 (2006), pp. 255–268] have recently proposed an approach for small-area estimation that is based on M-quantile (MQ) regression. This allows for models robust to outliers and to distributional assumptions on the errors and the area effects. However, when the functional form of the relationship between the qth MQ and the covariates is not linear, it can lead to biased estimates of the small area parameters. Pratesi et al. [Semiparametric M-quantile regression for estimating the proportion of acidic lakes in 8-digit HUCs of the Northeastern US, Environmetrics 19(7) (2008), pp. 687–701] apply an extended version of this approach for the estimation of the small area distribution function using a non-parametric specification of the conditional MQ of the response variable given the covariates [M. Pratesi, M.G. Ranalli, and N. Salvati, Nonparametric m-quantile regression using penalized splines, J. Nonparametric Stat. 21 (2009), pp. 287–304]. We will derive the small area estimator of the mean under this model, together with its mean-squared error estimator and compare its performance to the other estimators via simulations on both real and simulated data.  相似文献   

15.
We propose a specific general Markov-regime switching estimation both in the long memory parameter d and the mean of a time series. We employ Viterbi algorithm that combines the Viterbi procedures in two state Markov-switching parameter estimation. It is well-known that existence of mean break and long memory in time series can be easily confused with each other in most cases. Thus, we aim at observing the deviation and interaction of mean and d estimates for different cases. A Monte Carlo experiment reveals that the finite sample performance of the proposed algorithm for a simple mixture model of Markov-switching mean and d changes with respect to the fractional integrating parameters and the mean values for the two regimes.  相似文献   

16.
The classical bivariate F distribution arises from ratios of chi-squared random variables with common denominators. A consequent disadvantage is that its univariate F marginal distributions have one degree of freedom parameter in common. In this paper, we add a further independent chi-squared random variable to the denominator of one of the ratios and explore the extended bivariate F distribution, with marginals on arbitrary degrees of freedom, that results. Transformations linking F, beta and skew t distributions are then applied componentwise to produce bivariate beta and skew t distributions which also afford marginal (beta and skew t) distributions with arbitrary parameter values. We explore a variety of properties of these distributions and give an example of a potential application of the bivariate beta distribution in Bayesian analysis.  相似文献   

17.
We revisit the problem of estimating the proportion π of true null hypotheses where a large scale of parallel hypothesis tests are performed independently. While the proportion is a quantity of interest in its own right in applications, the problem has arisen in assessing or controlling an overall false discovery rate. On the basis of a Bayes interpretation of the problem, the marginal distribution of the p-value is modeled in a mixture of the uniform distribution (null) and a non-uniform distribution (alternative), so that the parameter π of interest is characterized as the mixing proportion of the uniform component on the mixture. In this article, a nonparametric exponential mixture model is proposed to fit the p-values. As an alternative approach to the convex decreasing mixture model, the exponential mixture model has the advantages of identifiability, flexibility, and regularity. A computation algorithm is developed. The new approach is applied to a leukemia gene expression data set where multiple significance tests over 3,051 genes are performed. The new estimate for π with the leukemia gene expression data appears to be about 10% lower than the other three estimates that are known to be conservative. Simulation results also show that the new estimate is usually lower and has smaller bias than the other three estimates.  相似文献   

18.
Mixtures of multivariate t distributions provide a robust parametric extension to the fitting of data with respect to normal mixtures. In presence of some noise component, potential outliers or data with longer-than-normal tails, one way to broaden the model can be provided by considering t distributions. In this framework, the degrees of freedom can act as a robustness parameter, tuning the heaviness of the tails, and downweighting the effect of the outliers on the parameters estimation. The aim of this paper is to extend to mixtures of multivariate elliptical distributions some theoretical results about the likelihood maximization on constrained parameter spaces. Further, a constrained monotone algorithm implementing maximum likelihood mixture decomposition of multivariate t distributions is proposed, to achieve improved convergence capabilities and robustness. Monte Carlo numerical simulations and a real data study illustrate the better performance of the algorithm, comparing it to earlier proposals.  相似文献   

19.
In this article, an alternative estimation approach is proposed to fit linear mixed effects models where the random effects follow a finite mixture of normal distributions. This heterogeneity linear mixed model is an interesting tool since it relaxes the classical normality assumption and is also perfectly suitable for classification purposes, based on longitudinal profiles. Instead of fitting directly the heterogeneity linear mixed model, we propose to fit an equivalent mixture of linear mixed models under some restrictions which is computationally simpler. Unlike the former model, the latter can be maximized analytically using an EM-algorithm and the obtained parameter estimates can be easily used to compute the parameter estimates of interest.  相似文献   

20.
Very often, in psychometric research, as in educational assessment, it is necessary to analyze item response from clustered respondents. The multiple group item response theory (IRT) model proposed by Bock and Zimowski [12] provides a useful framework for analyzing such type of data. In this model, the selected groups of respondents are of specific interest such that group-specific population distributions need to be defined. The usual assumption for parameter estimation in this model, which is that the latent traits are random variables following different symmetric normal distributions, has been questioned in many works found in the IRT literature. Furthermore, when this assumption does not hold, misleading inference can result. In this paper, we consider that the latent traits for each group follow different skew-normal distributions, under the centered parameterization. We named it skew multiple group IRT model. This modeling extends the works of Azevedo et al. [4], Bazán et al. [11] and Bock and Zimowski [12] (concerning the latent trait distribution). Our approach ensures that the model is identifiable. We propose and compare, concerning convergence issues, two Monte Carlo Markov Chain (MCMC) algorithms for parameter estimation. A simulation study was performed in order to evaluate parameter recovery for the proposed model and the selected algorithm concerning convergence issues. Results reveal that the proposed algorithm recovers properly all model parameters. Furthermore, we analyzed a real data set which presents asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of negative asymmetry for some latent trait distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号