首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Inferences for survival curves based on right censored continuous or grouped data are studied. Testing homogeneity with an ordered restricted alternative and testing the order restriction as the null hypothesis are considered. Under a proportional hazards model, the ordering on the survival curves corresponds to an ordering on the regression coefficients. Approximate likelihood methods are obtained by applying order restricted procedures to the estimates of the regression coefficients. Ordered analogues to the log rank test which are based on the score statistics are considered also. Chi-bar-squared distributions, which have been studied extensively, are shown to provide reasonable approximations to the null distributions of these tests statistics. Using Monte Carlo techniques, the powers of these two types of tests are compared with those that are available in the literature.  相似文献   

2.
Aalen's nonparametric additive model in which the regression coefficients are assumed to be unspecified functions of time is a flexible alternative to Cox's proportional hazards model when the proportionality assumption is in doubt. In this paper, we incorporate a general linear hypothesis into the estimation of the time‐varying regression coefficients. We combine unrestricted least squares estimators and estimators that are restricted by the linear hypothesis and produce James‐Stein‐type shrinkage estimators of the regression coefficients. We develop the asymptotic joint distribution of such restricted and unrestricted estimators and use this to study the relative performance of the proposed estimators via their integrated asymptotic distributional risks. We conduct Monte Carlo simulations to examine the relative performance of the estimators in terms of their integrated mean square errors. We also compare the performance of the proposed estimators with a recently devised LASSO estimator as well as with ridge‐type estimators both via simulations and data on the survival of primary billiary cirhosis patients.  相似文献   

3.
Rui Fang  Chen Li 《Statistics》2016,50(4):930-955
Stochastic comparison on order statistics from heterogeneous-dependent observations has been paid lots of attention recently. This paper devotes to investigating the ordering properties of order statistics from dependent observations. We derive the usual stochastic order for sample minimums and the second smallest order statistic, the dispersive order and the star order for minimums of samples having proportional hazards and Archimedean survival copulas. Similar ordering results are also obtained for maximums and the second largest order statistic of samples having proportional reversed hazards and Archimedean copulas. Several examples illustrating the main results are presented as well.  相似文献   

4.
We give chi-squared goodness-of fit tests for parametric regression models such as accelerated failure time, proportional hazards, generalized proportional hazards, frailty models, transformation models, and models with cross-effects of survival functions. Random right censored data are used. Choice of random grouping intervals as data functions is considered.  相似文献   

5.
The implications of parameter orthogonality for the robustness of survival regression models are considered. The question of which of the proportional hazards or the accelerated life families of models would be more appropriate for analysis is usually ignored, and the proportional hazards family is applied, particularly in medicine, for convenience. Accelerated life models have conventionally been used in reliability applications. We propose a one-parameter family mixture survival model which includes both the accelerated life and the proportional hazards models. By orthogonalizing relative to the mixture parameter, we can show that, for small effects of the covariates, the regression parameters under the alternative families agree to within a constant. This recovers a known misspecification result. We use notions of parameter orthogonality to explore robustness to other types of misspecification including misspecified base-line hazards. The results hold in the presence of censoring. We also study the important question of when proportionality matters.  相似文献   

6.
In survival analysis, it is routine to test equality of two survival curves, which is often conducted by using the log-rank test. Although it is optimal under the proportional hazards assumption, the log-rank test is known to have little power when the survival or hazard functions cross. To test the overall homogeneity of hazard rate functions, we propose a group of partitioned log-rank tests. By partitioning the time axis and taking the supremum of the sum of two partitioned log-rank statistics over different partitioning points, the proposed test gains enormous power for cases with crossing hazards. On the other hand, when the hazards are indeed proportional, our test still maintains high power close to that of the optimal log-rank test. Extensive simulation studies are conducted to compare the proposed test with existing methods, and three real data examples are used to illustrate the commonality of crossing hazards and the advantages of the partitioned log-rank tests.  相似文献   

7.
In clinical trials survival endpoints are usually compared using the log-rank test. Sequential methods for the log-rank test and the Cox proportional hazards model are largely reported in the statistical literature. When the proportional hazards assumption is violated the hazard ratio is ill-defined and the power of the log-rank test depends on the distribution of the censoring times. The average hazard ratio was proposed as an alternative effect measure, which has a meaningful interpretation in the case of non-proportional hazards, and is equal to the hazard ratio, if the hazards are indeed proportional. In the present work we prove that the average hazard ratio based sequential test statistics are asymptotically multivariate normal with the independent increments property. This allows for the calculation of group-sequential boundaries using standard methods and existing software. The finite sample characteristics of the new method are examined in a simulation study in a proportional and a non-proportional hazards setting.  相似文献   

8.
This paper considers the estimation of the regression coefficients in the Cox proportional hazards model with left-truncated and interval-censored data. Using the approaches of Pan [A multiple imputation approach to Cox regression with interval-censored data, Biometrics 56 (2000), pp. 199–203] and Heller [Proportional hazards regression with interval censored data using an inverse probability weight, Lifetime Data Anal. 17 (2011), pp. 373–385], we propose two estimates of the regression coefficients. The first estimate is based on a multiple imputation methodology. The second estimate uses an inverse probability weight to select event time pairs where the ordering is unambiguous. A simulation study is conducted to investigate the performance of the proposed estimators. The proposed methods are illustrated using the Centers for Disease Control and Prevention (CDC) acquired immunodeficiency syndrome (AIDS) Blood Transfusion Data.  相似文献   

9.
Extended Hazard Regression Model for Reliability and Survival Analysis   总被引:1,自引:0,他引:1  
We propose an extended hazard regression model which allows the spread parameter to be dependent on covariates. This allows a broad class of models which includes the most common hazard models, such as the proportional hazards model, the accelerated failure time model and a proportional hazards/accelerated failure time hybrid model with constant spread parameter. Simulations based on sub-classes of this model suggest that maximum likelihood performs well even when only small or moderate-size data sets are available and the censoring pattern is heavy. The methodology provides a broad framework for analysis of reliability and survival data. Two numerical examples illustrate the results.  相似文献   

10.
Summary. In the analysis of medical survival data, semiparametric proportional hazards models are widely used. When the proportional hazards assumption is not tenable, these models will not be suitable. Other models for covariate effects can be useful. In particular, we consider accelerated life models, in which the effect of covariates is to scale the quantiles of the base-line distribution. Solomon and Hutton have suggested that there is some robustness to misspecification of survival regression models. They showed that the relative importance of covariates is preserved under misspecification with assumptions of small coefficients and orthogonal transformation of covariates. We elucidate these results by applications to data from five trials which compare two common anti-epileptic drugs (carbamazepine versus sodium valporate monotherapy for epilepsy) and to survival of a cohort of people with cerebral palsy. Results on the robustness against model misspecification depend on the assumptions of small coefficients and on the underlying distribution of the data. These results hold in cerebral palsy but do not hold in epilepsy data which have early high hazard rates. The orthogonality of coefficients is not important. However, the choice of model is important for an estimation of the magnitude of effects, particularly if the base-line shape parameter indicates high initial hazard rates.  相似文献   

11.
The proportional hazards regression model of Cox(1972) is widely used in analyzing survival data. We examine several goodness of fit tests for checking the proportionality of hazards in the Cox model with two-sample censored data, and compare the performance of these tests by a simulation study. The strengths and weaknesses of the tests are pointed out. The effects of the extent of random censoring on the size and power are also examined. Results of a simulation study demonstrate that Gill and Schumacher's test is most powerful against a broad range of monotone departures from the proportional hazards assumption, but it may not perform as well fail for alternatives of nonmonotone hazard ratio. For the latter kind of alternatives, Andersen's test may detect patterns of irregular changes in hazards.  相似文献   

12.
It has been approximately 30 years since D.R. Cox introduced the proportional hazards method to model the relationship between covariates and survival time. However, the proportional hazards model has limited value when the proportionality assumption is violated. Over the years, there have many been many alternative proposals to the proportional hazards regression model for the case of right censored survival data, but to date none have demonstrated widespread acceptance. In general, problems encountered in these methods include their computational algorithms or evaluation of their asymptotic properties. In this work, an estimating equation based on a U-statistic of degree 2 is proposed. It is easy to implement and the U-statistic framework provides a straightforward development of asymptotic inferential theory for the regression parameters.  相似文献   

13.
Unexplained heterogeneity in univariate survival data and association in multivariate survival can both be modelled by the inclusion of frailty effects. This paper investigates the consequences of ignoring frailty in analysis, fitting misspecified Cox proportional hazards models to the marginal distributions. Regression coefficients are biased towards 0 by an amount which depends in magnitude on the variability of the frailty terms and the form of frailty distribution. The bias is reduced when censoring is present. Fitted marginal survival curves can also differ substantially from the true marginals.  相似文献   

14.
Summary. The Cox proportional hazards model, which is widely used for the analysis of treatment and prognostic effects with censored survival data, makes the assumption that the hazard ratio is constant over time. Nonparametric estimators have been developed for an extended model in which the hazard ratio is allowed to change over time. Estimators based on residuals are appealing as they are easy to use and relate in a simple way to the more restricted Cox model estimator. After fitting a Cox model and calculating the residuals, one can obtain a crude estimate of the time-varying coefficients by adding a smooth of the residuals to the initial (constant) estimate. Treating the crude estimate as the fit, one can re-estimate the residuals. Iteration leads to consistent estimation of the nonparametric time-varying coefficients. This approach leads to clear guidelines for residual analysis in applications. The results are illustrated by an analysis of the Medical Research Council's myeloma trials, and by simulation.  相似文献   

15.
In a clinical trial with a time-to-event endpoint the treatment effect can be measured in various ways. Under proportional hazards all reasonable measures (such as the hazard ratio and the difference in restricted mean survival time) are consistent in the following sense: Take any control group survival distribution such that the hazard rate remains above zero; if there is no benefit by any measure there is no benefit by all measures, and as the magnitude of treatment benefit increases by any measure it increases by all measures. Under nonproportional hazards, however, survival curves can cross, and the direction of the effect for any pair of measures can be inconsistent. In this paper we critically evaluate a variety of treatment effect measures in common use and identify flaws with them. In particular, we demonstrate that a treatment's benefit has two distinct and independent dimensions which can be measured by the difference in the survival rate at the end of follow-up and the difference in restricted mean survival time, and that commonly used measures do not adequately capture both dimensions. We demonstrate that a generalized hazard difference, which can be estimated by the difference in exposure-adjusted subject incidence rates, captures both dimensions, and that its inverse, the number of patient-years of follow-up that results in one fewer event (the NYNT), is an easily interpretable measure of the magnitude of clinical benefit.  相似文献   

16.
Lee  Chi Hyun  Ning  Jing  Shen  Yu 《Lifetime data analysis》2019,25(1):79-96

Length-biased data are frequently encountered in prevalent cohort studies. Many statistical methods have been developed to estimate the covariate effects on the survival outcomes arising from such data while properly adjusting for length-biased sampling. Among them, regression methods based on the proportional hazards model have been widely adopted. However, little work has focused on checking the proportional hazards model assumptions with length-biased data, which is essential to ensure the validity of inference. In this article, we propose a statistical tool for testing the assumed functional form of covariates and the proportional hazards assumption graphically and analytically under the setting of length-biased sampling, through a general class of multiparameter stochastic processes. The finite sample performance is examined through simulation studies, and the proposed methods are illustrated with the data from a cohort study of dementia in Canada.

  相似文献   

17.
Flexible incorporation of both geographical patterning and risk effects in cancer survival models is becoming increasingly important, due in part to the recent availability of large cancer registries. Most spatial survival models stochastically order survival curves from different subpopulations. However, it is common for survival curves from two subpopulations to cross in epidemiological cancer studies and thus interpretable standard survival models can not be used without some modification. Common fixes are the inclusion of time-varying regression effects in the proportional hazards model or fully nonparametric modeling, either of which destroys any easy interpretability from the fitted model. To address this issue, we develop a generalized accelerated failure time model which allows stratification on continuous or categorical covariates, as well as providing per-variable tests for whether stratification is necessary via novel approximate Bayes factors. The model is interpretable in terms of how median survival changes and is able to capture crossing survival curves in the presence of spatial correlation. A detailed Markov chain Monte Carlo algorithm is presented for posterior inference and a freely available function frailtyGAFT is provided to fit the model in the R package spBayesSurv. We apply our approach to a subset of the prostate cancer data gathered for Louisiana by the surveillance, epidemiology, and end results program of the National Cancer Institute.  相似文献   

18.
In this article we study the method of nonparametric regression based on a transformation model, under which an unknown transformation of the survival time is nonlinearly, even more, nonparametrically, related to the covariates with various error distributions, which are parametrically specified with unknown parameters. Local linear approximations and locally weighted least squares are applied to obtain estimators for the effects of covariates with censored observations. We show that the estimators are consistent and asymptotically normal. This transformation model, coupled with local linear approximation techniques, provides many alternatives to the more general proportional hazards models with nonparametric covariates.  相似文献   

19.
In non‐randomized biomedical studies using the proportional hazards model, the data often constitute an unrepresentative sample of the underlying target population, which results in biased regression coefficients. The bias can be avoided by weighting included subjects by the inverse of their respective selection probabilities, as proposed by Horvitz & Thompson (1952) and extended to the proportional hazards setting for use in surveys by Binder (1992) and Lin (2000). In practice, the weights are often estimated and must be treated as such in order for the resulting inference to be accurate. The authors propose a two‐stage weighted proportional hazards model in which, at the first stage, weights are estimated through a logistic regression model fitted to a representative sample from the target population. At the second stage, a weighted Cox model is fitted to the biased sample. The authors propose estimators for the regression parameter and cumulative baseline hazard. They derive the asymptotic properties of the parameter estimators, accounting for the difference in the variance introduced by the randomness of the weights. They evaluate the accuracy of the asymptotic approximations in finite samples through simulation. They illustrate their approach in an analysis of renal transplant patients using data obtained from the Scientific Registry of Transplant Recipients  相似文献   

20.
A common approach to testing for differences between the survival rates of two therapies is to use a proportional hazards regression model which allows for an adjustment of the two survival functions for any imbalance in prognostic factors in the comparison. When the relative risk of one treatment to the other is not constant over time the question of which therapy has a survival advantage is difficult to determine from the Cox model. An alternative approach to this problem is to plot the difference between the two predicted survival functions with a confidence band that provides information about when these two treatments differ. Such a band will depend on the covariate values of a given patient. In this paper we show how to construct a confidence band for the difference of two survival functions based on the proportional hazards model. A simulation approach is used to generate the bands. This approach is used to compare the survival probabilities of chemotherapy and allogeneic bone marrow transplants for chronic leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号