首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a′(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiam?ik (Math. Slovaca 28:139–145, 1978) and later Alon, Sudakov and Zaks (J. Graph Theory 37:157–167, 2001) conjectured that a′(G)≤Δ+2 for any simple graph G with maximum degree Δ. In this paper, we confirm this conjecture for planar graphs G with Δ≠4 and without 4-cycles.  相似文献   

2.
A total coloring of a graph G is a coloring such that no two adjacent or incident elements receive the same color. In this field there is a famous conjecture, named Total Coloring Conjecture, saying that the the total chromatic number of each graph G is at most \(\Delta +2\). Let G be a planar graph with maximum degree \(\Delta \ge 7\) and without adjacent chordal 6-cycles, that is, two cycles of length 6 with chord do not share common edges. In this paper, it is proved that the total chromatic number of G is \(\Delta +1\), which partly confirmed Total Coloring Conjecture.  相似文献   

3.
In the study of computer science, optimization, computation of Hessians matrix, graph coloring is an important tool. In this paper, we consider a classical coloring, total coloring. Let \(G=(V,E)\) be a graph. Total coloring is a coloring of \(V\cup {E}\) such that no two adjacent or incident elements (vertex/edge) receive the same color. Let G be a planar graph with \(\varDelta \ge 8\). We proved that if for every vertex \(v\in V\), there exists two integers \(i_v,j_v\in \{3,4,5,6,7\}\) such that v is not incident with adjacent \(i_v\)-cycles and \(j_v\)-cycles, then the total chromatic number of graph G is \(\varDelta +1\).  相似文献   

4.
The adjacent vertex distinguishing total coloring of planar graphs   总被引:3,自引:3,他引:0  
An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices have distinct sets of colors. The minimum number of colors needed for an adjacent vertex distinguishing total coloring of G is denoted by $\chi''_{a}(G)$ . In this paper, we characterize completely the adjacent vertex distinguishing total chromatic number of planar graphs G with large maximum degree Δ by showing that if Δ≥14, then $\varDelta+1\leq \chi''_{a}(G)\leq \varDelta+2$ , and $\chi''_{a}(G)=\varDelta+2$ if and only if G contains two adjacent vertices of maximum degree.  相似文献   

5.
The total chromatic number of a graph \(G\), denoted by \(\chi ''(G)\), is the minimum number of colors needed to color the vertices and edges of \(G\) such that no two adjacent or incident elements get the same color. It is known that if a planar graph \(G\) has maximum degree \(\Delta (G)\ge 9\), then \(\chi ''(G)=\Delta (G)+1\). In this paper, it is proved that if \(G\) is a planar graph with \(\Delta (G)\ge 7\), and for each vertex \(v\), there is an integer \(k_v\in \{3,4,5,6,7,8\}\) such that there is no \(k_v\)-cycle which contains \(v\), then \(\chi ''(G)=\Delta (G)+1\).  相似文献   

6.
Let \(G=(V,E)\) be a graph and \(\phi \) be a total \(k\)-coloring of \(G\) using the color set \(\{1,\ldots , k\}\). Let \(\sum _\phi (u)\) denote the sum of the color of the vertex \(u\) and the colors of all incident edges of \(u\). A \(k\)-neighbor sum distinguishing total coloring of \(G\) is a total \(k\)-coloring of \(G\) such that for each edge \(uv\in E(G)\), \(\sum _\phi (u)\ne \sum _\phi (v)\). By \(\chi ^{''}_{nsd}(G)\), we denote the smallest value \(k\) in such a coloring of \(G\). Pil?niak and Wo?niak first introduced this coloring and conjectured that \(\chi _{nsd}^{''}(G)\le \Delta (G)+3\) for any simple graph \(G\). In this paper, we prove that the conjecture holds for planar graphs without intersecting triangles with \(\Delta (G)\ge 7\). Moreover, we also show that \(\chi _{nsd}^{''}(G)\le \Delta (G)+2\) for planar graphs without intersecting triangles with \(\Delta (G) \ge 9\). Our approach is based on the Combinatorial Nullstellensatz and the discharging method.  相似文献   

7.
Let \(G=(V,E)\) be a graph and \(\phi : V\cup E\rightarrow \{1,2,\ldots ,k\}\) be a proper total coloring of G. Let f(v) denote the sum of the color on a vertex v and the colors on all the edges incident with v. The coloring \(\phi \) is neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number of G, denoted by \(\chi _{\Sigma }''(G)\). Pil?niak and Wo?niak conjectured that \(\chi _{\Sigma }''(G)\le \Delta (G)+3\) for any simple graph. By using the famous Combinatorial Nullstellensatz, we prove that \(\chi _{\Sigma }''(G)\le \max \{\Delta (G)+2, 10\}\) for planar graph G without 4-cycles. The bound \(\Delta (G)+2\) is sharp if \(\Delta (G)\ge 8\).  相似文献   

8.
A vertex coloring of a graph \(G\) is called acyclic if it is a proper vertex coloring such that every cycle \(C\) receives at least three colors. The acyclic chromatic number of \(G\) is the least number of colors in an acyclic coloring of \(G\). We prove that acyclic chromatic number of any graph \(G\) with maximum degree \(\Delta \ge 4\) and with girth at least \(4\Delta \) is at most \(12\Delta \).  相似文献   

9.
Let \(G\) be a planar graph with maximum degree \(\varDelta \ge 8\) and without chordal 5-cycles. Then \(\chi '_{l}(G)=\varDelta \) and \(\chi ''_{l}(G)=\varDelta +1\).  相似文献   

10.
The square coloring of a graph is to color the vertices of a graph at distance at most 2 with different colors. In 1977, Wegner posed a conjecture on square coloring of planar graphs. The conjecture is still open. In this paper, we prove that Wegner’s conjecture is true for planar graphs with girth at least?6.  相似文献   

11.
12.
An adjacent vertex-distinguishing edge coloring of a graph is a proper edge coloring such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex-distinguishing edge chromatic number is the minimum number of colors required for an adjacent vertex-distinguishing edge coloring, denoted as \(\chi '_{as}(G)\). In this paper, we prove that for a connected graph G with maximum degree \(\Delta \ge 3\), \(\chi '_{as}(G)\le 3\Delta -1\), which proves the previous upper bound. We also prove that for a graph G with maximum degree \(\Delta \ge 458\) and minimum degree \(\delta \ge 8\sqrt{\Delta ln \Delta }\), \(\chi '_{as}(G)\le \Delta +1+5\sqrt{\Delta ln \Delta }\).  相似文献   

13.
Journal of Combinatorial Optimization - The adjacent vertex distinguishing edge coloring of a graph G is a proper edge coloring in which each pair of adjacent vertices is assigned different color...  相似文献   

14.
Journal of Combinatorial Optimization - In this work, we investigate the total and edge colorings of the Kneser graphs K(n, s). We prove that the sparse case of Kneser graphs, the odd...  相似文献   

15.
A vertex coloring is said to be 2-distance if any two distinct vertices of distance at most 2 receive different colors. Let G be a planar graph with girth at least 5. In this paper, we prove that G admits a 2-distance coloring with at most \(\Delta (G)+3\) colors if \(\Delta (G)\ge 339\).  相似文献   

16.
A graph G is edge-k-choosable if, whenever we are given a list L(e) of colors with \(|L(e)|\ge k\) for each \(e\in E(G)\), we can choose a color from L(e) for each edge e such that no two adjacent edges receive the same color. In this paper we prove that if G is a planar graph, and each 6-cycle contains at most two chords, then G is edge-k-choosable, where \(k=\max \{8,\Delta (G)+1\}\), and edge-t-choosable, where \(t=\max \{10,\Delta (G)\}\).  相似文献   

17.
A 2-distance coloring of a graph is a coloring of the vertices such that two vertices at distance at most two receive distinct colors. The 2-distance chromatic number \(\chi _{2}(G)\) is the smallest k such that G is k-2-distance colorable. In this paper, we prove that every planar graph without 3, 4, 7-cycles and \(\Delta (G)\ge 15\) is (\(\Delta (G)+4\))-2-distance colorable.  相似文献   

18.
A 2-distance k-coloring of a graph G is a proper k-coloring such that any two vertices at distance two get different colors. \(\chi _{2}(G)\)=min{k|G has a 2-distance k-coloring}. Wegner conjectured that for each planar graph G with maximum degree \(\Delta \), \(\chi _2(G) \le 7\) if \(\Delta \le 3\), \(\chi _2(G) \le \Delta +5\) if \(4\le \Delta \le 7\) and \(\chi _2(G) \le \lfloor \frac{3\Delta }{2}\rfloor +1\) if \(\Delta \ge 8\). In this paper, we prove that: (1) If G is a planar graph with maximum degree \(\Delta \le 5\), then \(\chi _{2}(G)\le 20\); (2) If G is a planar graph with maximum degree \(\Delta \ge 6\), then \(\chi _{2}(G)\le 5\Delta -7\).  相似文献   

19.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\mathrm{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, $\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1$ . In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.  相似文献   

20.
In this paper we study the acyclic 3-colorability of some subclasses of planar graphs. First, we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Then, we show that every planar graph has a subdivision with one vertex per edge that is acyclically 3-colorable and provide a linear-time coloring algorithm. Finally, we characterize the series-parallel graphs for which every 3-coloring is acyclic and provide a linear-time recognition algorithm for such graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号