首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  Multilevel modelling is sometimes used for data from complex surveys involving multistage sampling, unequal sampling probabilities and stratification. We consider generalized linear mixed models and particularly the case of dichotomous responses. A pseudolikelihood approach for accommodating inverse probability weights in multilevel models with an arbitrary number of levels is implemented by using adaptive quadrature. A sandwich estimator is used to obtain standard errors that account for stratification and clustering. When level 1 weights are used that vary between elementary units in clusters, the scaling of the weights becomes important. We point out that not only variance components but also regression coefficients can be severely biased when the response is dichotomous. The pseudolikelihood methodology is applied to complex survey data on reading proficiency from the American sample of the 'Program for international student assessment' 2000 study, using the Stata program gllamm which can estimate a wide range of multilevel and latent variable models. Performance of pseudo-maximum-likelihood with different methods for handling level 1 weights is investigated in a Monte Carlo experiment. Pseudo-maximum-likelihood estimators of (conditional) regression coefficients perform well for large cluster sizes but are biased for small cluster sizes. In contrast, estimators of marginal effects perform well in both situations. We conclude that caution must be exercised in pseudo-maximum-likelihood estimation for small cluster sizes when level 1 weights are used.  相似文献   

2.
We propose a new class of state space models for longitudinal discrete response data where the observation equation is specified in an additive form involving both deterministic and random linear predictors. These models allow us to explicitly address the effects of trend, seasonal or other time-varying covariates while preserving the power of state space models in modeling serial dependence in the data. We develop a Markov chain Monte Carlo algorithm to carry out statistical inference for models with binary and binomial responses, in which we invoke de Jong and Shephard’s (Biometrika 82(2):339–350, 1995) simulation smoother to establish an efficient sampling procedure for the state variables. To quantify and control the sensitivity of posteriors on the priors of variance parameters, we add a signal-to-noise ratio type parameter in the specification of these priors. Finally, we illustrate the applicability of the proposed state space mixed models for longitudinal binomial response data in both simulation studies and data examples.  相似文献   

3.
The study of count data time series has been active in the past decade, mainly in theory and model construction. There are different ways to construct time series models with a geometric autocorrelation function, and a given univariate margin such as negative binomial. In this paper, we investigate negative binomial time series models based on the binomial thinning and two other expectation thinning operators, and show how they differ in conditional variance or heteroscedasticity. Since the model construction is in terms of probability generating functions, typically, the relevant conditional probability mass functions do not have explicit forms. In order to do simulations, likelihood inference, graphical diagnostics and prediction, we use a numerical method for inversion of characteristic functions. We illustrate the numerical methods and compare the various negative binomial time series models for a real data example.  相似文献   

4.
We review Bayesian analysis of hierarchical non-standard Poisson regression models with an emphasis on microlevel heterogeneity and macrolevel autocorrelation. For the former case, we confirm that negative binomial regression usually accounts for microlevel heterogeneity (overdispersion) satisfactorily; for the latter case, we apply the simple first-order Markov transition model to conveniently capture the macrolevel autocorrelation which often arises from temporal and/or spatial count data, rather than attaching complex random effects directly to the regression parameters. Specifically, we extend the hierarchical (multilevel) Poisson model into negative binomial models with macrolevel autocorrelation using restricted gamma mixture with unit mean and Markov transition covariate created from preceding residuals. We prove a mild sufficient condition for posterior propriety under flat prior for the interesting fixed effects. Our methodology is implemented by analyzing the Baltic sea peracarids diurnal activity data published in the marine biology and ecology literature.  相似文献   

5.
Recursive partitioning algorithms separate a feature space into a set of disjoint rectangles. Then, usually, a constant in every partition is fitted. While this is a simple and intuitive approach, it may still lack interpretability as to how a specific relationship between dependent and independent variables may look. Or it may be that a certain model is assumed or of interest and there is a number of candidate variables that may non-linearly give rise to different model parameter values. We present an approach that combines generalized linear models (GLM) with recursive partitioning that offers enhanced interpretability of classical trees as well as providing an explorative way to assess a candidate variable's influence on a parametric model. This method conducts recursive partitioning of a GLM by (1) fitting the model to the data set, (2) testing for parameter instability over a set of partitioning variables, (3) splitting the data set with respect to the variable associated with the highest instability. The outcome is a tree where each terminal node is associated with a GLM. We will show the method's versatility and suitability to gain additional insight into the relationship of dependent and independent variables by two examples, modelling voting behaviour and a failure model for debt amortization, and compare it to alternative approaches.  相似文献   

6.
Nonignorable nonresponse is a nonresponse mechanism that depends on the values of the variable having nonresponse. When an observed data of a binomial distribution suffer missing values from a nonignorable nonresponse mechanism, the binomial distribution parameters become unidentifiable without any other auxiliary information or assumption. To address the problems of non identifiability, existing methods mostly based on the log-linear regression model. In this article, we focus on the model when the nonresponse is nonignorable and we consider to use the auxiliary data to improve identifiability; furthermore, we derive the maximum likelihood estimator (MLE) for the binomial proportion and its associated variance. We present results for an analysis of real-life data from the SARS study in China. Finally, the simulation study shows that the proposed method gives promising results.  相似文献   

7.
Inverse Gaussian regression models are useful for regression data where both variables are nonnegative and the variance of the dependent variable depends on the independent variable, Zero intercept inverse Gaussian regression models are presented with non-constant variance, constant ratio of variance to the mean and constant coefficient of variation, For purposes of calibration, the prediction band is used to give point and interval estimators for the independent variable, The results are illustrated with a real data set.  相似文献   

8.
The multinomial logistic regression model (MLRM) can be interpreted as a natural extension of the binomial model with logit link function to situations where the response variable can have three or more possible outcomes. In addition, when the categories of the response variable are nominal, the MLRM can be expressed in terms of two or more logistic models and analyzed in both frequentist and Bayesian approaches. However, few discussions about post modeling in categorical data models are found in the literature, and they mainly use Bayesian inference. The objective of this work is to present classic and Bayesian diagnostic measures for categorical data models. These measures are applied to a dataset (status) of patients undergoing kidney transplantation.  相似文献   

9.
We consider varying coefficient models, which are an extension of the classical linear regression models in the sense that the regression coefficients are replaced by functions in certain variables (for example, time), the covariates are also allowed to depend on other variables. Varying coefficient models are popular in longitudinal data and panel data studies, and have been applied in fields such as finance and health sciences. We consider longitudinal data and estimate the coefficient functions by the flexible B-spline technique. An important question in a varying coefficient model is whether an estimated coefficient function is statistically different from a constant (or zero). We develop testing procedures based on the estimated B-spline coefficients by making use of nice properties of a B-spline basis. Our method allows longitudinal data where repeated measurements for an individual can be correlated. We obtain the asymptotic null distribution of the test statistic. The power of the proposed testing procedures are illustrated on simulated data where we highlight the importance of including the correlation structure of the response variable and on real data.  相似文献   

10.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

11.
In this paper, we propose a three level hierarchical Bayesian model for variable selection and estimation in quantile regression problems. Specifically, at the first level we consider a zero mean normal priors for the coefficients with unknown variance parameters. At the second level, we specify two different priors for the unknown variance parameters which introduce two different models producing different levels of sparsity. Then, at the third level we suggest joint improper priors for the unknown hyperparameters assuming they are independent. Simulations and Boston Housing data are utilized to compare the performance of our models with six existing models. The results indicate that our models perform good in the simulations and Boston Housing data.  相似文献   

12.
Inverse Gaussian regression models are useful for data where both the independent and dependent variable are nonnegative and the variance of the dependent variable depends on the independent variable. Zero intercept inverse Gaussian regression models are presented with nonconstant variance, constant ratio of variance to the mean and constant coefficient of variation. The power function for testing hypotheses about the slope is given for all of these models.  相似文献   

13.
Abstract. Latent variable modelling has gradually become an integral part of mainstream statistics and is currently used for a multitude of applications in different subject areas. Examples of ‘traditional’ latent variable models include latent class models, item–response models, common factor models, structural equation models, mixed or random effects models and covariate measurement error models. Although latent variables have widely different interpretations in different settings, the models have a very similar mathematical structure. This has been the impetus for the formulation of general modelling frameworks which accommodate a wide range of models. Recent developments include multilevel structural equation models with both continuous and discrete latent variables, multiprocess models and nonlinear latent variable models.  相似文献   

14.
Zero-inflated data are more frequent when the data represent counts. However, there are practical situations in which continuous data contain an excess of zeros. In these cases, the zero-inflated Poisson, binomial or negative binomial models are not suitable. In order to reduce this gap, we propose the zero-spiked gamma-Weibull (ZSGW) model by mixing a distribution which is degenerate at zero with the gamma-Weibull distribution, which has positive support. The model attempts to estimate simultaneously the effects of explanatory variables on the response variable and the zero-spiked. We consider a frequentist analysis and a non-parametric bootstrap for estimating the parameters of the ZSGW regression model. We derive the appropriate matrices for assessing local influence on the model parameters. We illustrate the performance of the proposed regression model by means of a real data set (copaiba oil resin production) from a study carried out at the Department of Forest Science of the Luiz de Queiroz School of Agriculture, University of São Paulo. Based on the ZSGW regression model, we determine the explanatory variables that can influence the excess of zeros of the resin oil production and identify influential observations. We also prove empirically that the proposed regression model can be superior to the zero-adjusted inverse Gaussian regression model to fit zero-inflated positive continuous data.  相似文献   

15.
Fitting cross-classified multilevel models with binary response is challenging. In this setting a promising method is Bayesian inference through Integrated Nested Laplace Approximations (INLA), which performs well in several latent variable models. We devise a systematic simulation study to assess the performance of INLA with cross-classified binary data under different scenarios defined by the magnitude of the variances of the random effects, the number of observations, the number of clusters, and the degree of cross-classification. In the simulations INLA is systematically compared with the popular method of Maximum Likelihood via Laplace Approximation. By an application to the classical salamander mating data, we compare INLA with the best performing methods. Given the computational speed and the generally good performance, INLA turns out to be a valuable method for fitting logistic cross-classified models.  相似文献   

16.
In this contribution we aim at improving ordinal variable selection in the context of causal models for credit risk estimation. In this regard, we propose an approach that provides a formal inferential tool to compare the explanatory power of each covariate and, therefore, to select an effective model for classification purposes. Our proposed model is Bayesian nonparametric thus keeps the amount of model specification to a minimum. We consider the case in which information from the covariates is at the ordinal level. A noticeable instance of this regards the situation in which ordinal variables result from rankings of companies that are to be evaluated according to different macro and micro economic aspects, leading to ordinal covariates that correspond to various ratings, that entail different magnitudes of the probability of default. For each given covariate, we suggest to partition the statistical units in as many groups as the number of observed levels of the covariate. We then assume individual defaults to be homogeneous within each group and heterogeneous across groups. Our aim is to compare and, therefore select, the partition structures resulting from the consideration of different explanatory covariates. The metric we choose for variable comparison is the calculation of the posterior probability of each partition. The application of our proposal to a European credit risk database shows that it performs well, leading to a coherent and clear method for variable averaging of the estimated default probabilities.  相似文献   

17.
Outliers in multilevel data   总被引:2,自引:0,他引:2  
This paper offers the data analyst a range of practical procedures for dealing with outliers in multilevel data. It first develops several techniques for data exploration for outliers and outlier analysis and then applies these to the detailed analysis of outliers in two large scale multilevel data sets from educational contexts. The techniques include the use of deviance reduction, measures based on residuals, leverage values, hierarchical cluster analysis and a measure called DFITS. Outlier analysis is more complex in a multilevel data set than in, say, a univariate sample or a set of regression data, where the concept of an outlying value is straightforward. In the multilevel situation one has to consider, for example, at what level or levels a particular response is outlying, and in respect of which explanatory variables; furthermore, the treatment of a particular response at one level may affect its status or the status of other units at other levels in the model.  相似文献   

18.
We consider two estimation schemes based on penalized quasilikelihood and quasi-pseudo-likelihood in Poisson mixed models. The asymptotic bias in regression coefficients and variance components estimated by penalized quasilikelihood (PQL) is studied for small values of the variance components. We show the PQL estimators of both regression coefficients and variance components in Poisson mixed models have a smaller order of bias compared to those for binomial data. Unbiased estimating equations based on quasi-pseudo-likelihood are proposed and are shown to yield consistent estimators under some regularity conditions. The finite sample performance of these two methods is compared through a simulation study.  相似文献   

19.
Missing data analysis requires assumptions about an outcome model or a response probability model to adjust for potential bias due to nonresponse. Doubly robust (DR) estimators are consistent if at least one of the models is correctly specified. Multiply robust (MR) estimators extend DR estimators by allowing for multiple models for both the outcome and/or response probability models and are consistent if at least one of the multiple models is correctly specified. We propose a robust quasi-randomization-based model approach to bring more protection against model misspecification than the existing DR and MR estimators, where any multiple semiparametric, nonparametric or machine learning models can be used for the outcome variable. The proposed estimator achieves unbiasedness by using a subsampling Rao–Blackwell method, given cell-homogenous response, regardless of any working models for the outcome. An unbiased variance estimation formula is proposed, which does not use any replicate jackknife or bootstrap methods. A simulation study shows that our proposed method outperforms the existing multiply robust estimators.  相似文献   

20.
In the case where non-experimental data are available from an industrial process and a directed graph for how various factors affect a response variable is known based on a substantive understanding of the process, we consider a problem in which a control plan involving multiple treatment variables is conducted in order to bring a response variable close to a target value with variation reduction. Using statistical causal analysis with linear (recursive and non-recursive) structural equation models, we configure an optimal control plan involving multiple treatment variables through causal parameters. Based on the formulation, we clarify the causal mechanism for how the variance of a response variable changes when the control plan is conducted. The results enable us to evaluate the effect of a control plan on the variance of a response variable from non-experimental data and provide a new application of linear structural equation models to engineering science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号