首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
Clinical trials in the era of precision cancer medicine aim to identify and validate biomarker signatures which can guide the assignment of individually optimal treatments to patients. In this article, we propose a group sequential randomized phase II design, which updates the biomarker signature as the trial goes on, utilizes enrichment strategies for patient selection, and uses Bayesian response-adaptive randomization for treatment assignment. To evaluate the performance of the new design, in addition to the commonly considered criteria of Type I error and power, we propose four new criteria measuring the benefits and losses for individuals both inside and outside of the clinical trial. Compared with designs with equal randomization, the proposed design gives trial participants a better chance to receive their personalized optimal treatments and thus results in a higher response rate on the trial. This design increases the chance to discover a successful new drug by an adaptive enrichment strategy, i.e. identification and selective enrollment of a subset of patients who are sensitive to the experimental therapies. Simulation studies demonstrate these advantages of the proposed design. It is illustrated by an example based on an actual clinical trial in non-small-cell lung cancer.  相似文献   

2.
Traditional phase III clinical trials are powered to detect an overall treatment effect. However, it has increasingly been shown that many treatments are effective only for a subset of a population. The adaptive signature design uses genomic/proteomic information to prospectively predict a subset of patients more sensitive to treatment. Tests for overall treatment effect and for treatment effect in the predicted subset are conducted. In this work properties of the adaptive signature design are investigated through simulation. It was found that models which excluded expression main effect terms had higher empirical power than models which included them.  相似文献   

3.
Abstract

For clinical trials, molecular heterogeneity has played a more important role recently. Many novel clinical trial designs prospectively incorporate molecular information to evaluation of treatment effects. In this paper, an adaptive procedure incorporating a non-pre-specified genomic biomarker is employed in the interim of a conventional trial. A non-pre-specified binary genomic biomarker, which is predictive of treatment effect, is used to classify study patients into two mutually exclusive subgroups at the interim review. According to the observations at the interim stage, adaptations such as adjusting sample size or shifting eligibility of study patients are then made in case of different scenarios.  相似文献   

4.
Many syndromes traditionally viewed as individual diseases are heterogeneous in molecular pathogenesis and treatment responsiveness. This often leads to the conduct of large clinical trials to identify small average treatment benefits for heterogeneous groups of patients. Drugs that demonstrate effectiveness in such trials may subsequently be used broadly, resulting in ineffective treatment of many patients. New genomic and proteomic technologies provide powerful tools for the selection of patients likely to benefit from a therapeutic without unacceptable adverse events. In spite of the large literature on developing predictive biomarkers, there is considerable confusion about the development and validation of biomarker-based diagnostic classifiers for treatment selection. In this paper we attempt to clarify some of these issues and to provide guidance on the design of clinical trials for evaluating the clinical utility and robustness of pharmacogenomic classifiers.  相似文献   

5.
6.
Clinical trials are primarily conducted to understand the average effects treatments have on patients. However, patients are heterogeneous in the severity of the condition and in ways that affect what treatment effect they can expect. It is therefore important to understand and characterize how treatment effects vary. The design and analysis of clinical studies play critical roles in evaluating and characterizing heterogeneous treatment effects. This panel discussed considerations in design and analysis under the recognition that there are heterogeneous treatment effects across subgroups of patients. Panel members discussed many questions including: What is a good estimate of the treatment effect in me, a 65-year-old, bald, Caucasian-American, male patient? What magnitude of heterogeneity of treatment effects (HTE) is sufficiently large to merit attention? What role can prior evidence about HTE play in confirmatory trial design and analysis? Is there anything described in the 21st Century Cures Act that would benefit from greater attention to HTE? An example of a Bayesian approach addressing multiplicity when testing for treatment effects in subgroups will be provided. We can do more or better at understanding heterogeneous treatment effects and providing the best information on heterogeneous treatment effects.  相似文献   

7.
Patients with different characteristics (e.g., biomarkers, risk factors) may have different responses to the same medicine. Personalized medicine clinical studies that are designed to identify patient subgroup treatment efficacies can benefit patients and save medical resources. However, subgroup treatment effect identification complicates the study design in consideration of desired operating characteristics. We investigate three Bayesian adaptive models for subgroup treatment effect identification: pairwise independent, hierarchical, and cluster hierarchical achieved via Dirichlet Process (DP). The impact of interim analysis and longitudinal data modeling on the personalized medicine study design is also explored. Interim analysis is considered since they can accelerate personalized medicine studies in cases where early stopping rules for success or futility are met. We apply integrated two-component prediction method (ITP) for longitudinal data simulation, and simple linear regression for longitudinal data imputation to optimize the study design. The designs' performance in terms of power for the subgroup treatment effects and overall treatment effect, sample size, and study duration are investigated via simulation. We found the hierarchical model is an optimal approach to identifying subgroup treatment effects, and the cluster hierarchical model is an excellent alternative approach in cases where sufficient information is not available for specifying the priors. The interim analysis introduction to the study design lead to the trade-off between power and expected sample size via the adjustment of the early stopping criteria. The introduction of the longitudinal modeling slightly improves the power. These findings can be applied to future personalized medicine studies with discrete or time-to-event endpoints.  相似文献   

8.
The conventional phase II trial design paradigm is to make the go/no-go decision based on the hypothesis testing framework. Statistical significance itself alone, however, may not be sufficient to establish that the drug is clinically effective enough to warrant confirmatory phase III trials. We propose the Bayesian optimal phase II trial design with dual-criterion decision making (BOP2-DC), which incorporates both statistical significance and clinical relevance into decision making. Based on the posterior probability that the treatment effect reaches the lower reference value (statistical significance) and the clinically meaningful value (clinical significance), BOP2-DC allows for go/consider/no-go decisions, rather than a binary go/no-go decision. BOP2-DC is highly flexible and accommodates various types of endpoints, including binary, continuous, time-to-event, multiple, and coprimary endpoints, in single-arm and randomized trials. The decision rule of BOP2-DC is optimized to maximize the probability of a go decision when the treatment is effective or minimize the expected sample size when the treatment is futile. Simulation studies show that the BOP2-DC design yields desirable operating characteristics. The software to implement BOP2-DC is freely available at www.trialdesign.org .  相似文献   

9.
10.
Phase II clinical trials designed for evaluating a drug's treatment effect can be either single‐arm or double‐arm. A single‐arm design tests the null hypothesis that the response rate of a new drug is lower than a fixed threshold, whereas a double‐arm scheme takes a more objective comparison of the response rate between the new treatment and the standard of care through randomization. Although the randomized design is the gold standard for efficacy assessment, various situations may arise where a single‐arm pilot study prior to a randomized trial is necessary. To combine the single‐ and double‐arm phases and pool the information together for better decision making, we propose a Single‐To‐double ARm Transition design (START) with switching hypotheses tests, where the first stage compares the new drug's response rate with a minimum required level and imposes a continuation criterion, and the second stage utilizes randomization to determine the treatment's superiority. We develop a software package in R to calibrate the frequentist error rates and perform simulation studies to assess the trial characteristics. Finally, a metastatic pancreatic cancer trial is used for illustrating the decision rules under the proposed START design.  相似文献   

11.
A placebo‐controlled randomized clinical trial is required to demonstrate that an experimental treatment is superior to its corresponding placebo on multiple coprimary endpoints. This is particularly true in the field of neurology. In fact, clinical trials for neurological disorders need to show the superiority of an experimental treatment over a placebo in two coprimary endpoints. Unfortunately, these trials often fail to detect a true treatment effect for the experimental treatment versus the placebo owing to an unexpectedly high placebo response rate. Sequential parallel comparison design (SPCD) can be used to address this problem. However, the SPCD has not yet been discussed in relation to clinical trials with coprimary endpoints. In this article, our aim was to develop a hypothesis‐testing method and a method for calculating the corresponding sample size for the SPCD with two coprimary endpoints. In a simulation, we show that the proposed hypothesis‐testing method achieves the nominal type I error rate and power and that the proposed sample size calculation method has adequate power accuracy. In addition, the usefulness of our methods is confirmed by returning to an SPCD trial with a single primary endpoint of Alzheimer disease‐related agitation.  相似文献   

12.
To shorten the drug lag or the time lag for approval, simultaneous drug development, submission, and approval in the world may be desirable. Recently, multi-regional trials have attracted much attention from sponsors as well as regulatory authorities. Current methods for sample determination are based on the assumption that true treatment effect is uniform across regions. However, unrecognized heterogeneity among patients as ethnic or genetic factor will effect patients’ survival. In this article, we address the issue that the treatment effects with unrecognized heterogeneity that interacts with treatment are among regions to design a multi-regional trial. The log-rank test is employed to deal with the heterogeneous effect size among regions. The test statistic for the overall treatment effect is used to determine the total sample size for a multi-regional trial and the consistent trend is used to rationalize partition for sample size to each region.  相似文献   

13.
Tuberculosis (TB) is one of the biggest killers among infectious diseases worldwide. Together with the identification of drugs that can provide benefits to patients, the challenge in TB is also the optimisation of the duration of these treatments. While conventional duration of treatment in TB is 6 months, there is evidence that shorter durations might be as effective but could be associated with fewer side effects and may be associated with better adherence. Based on a recent proposal of an adaptive order-restricted superiority design that employs the ordering assumptions within various duration of the same drug, we propose a non-inferiority (typically used in TB trials) adaptive design that effectively uses the order assumption. Together with the general construction of the hypothesis testing and expression for type I and type II errors, we focus on how the novel design was proposed for a TB trial concept. We consider a number of practical aspects such as choice of the design parameters, randomisation ratios, and timings of the interim analyses, and how these were discussed with the clinical team.  相似文献   

14.
A common problem in randomized controlled clinical trials is the optimal assignment of patients to treatment protocols, The traditional optimal design assumes a single criterion, although in reality, there are usually more than one objective in a clinical trial. In this paper, optimal treatment allocation schemes are found for a dual-objective clinical trial with a binary response. A graphical method for finding the optimal strategy is proposed and illustrative examples are discussed.  相似文献   

15.
Adaptation of clinical trial design generates many issues that have not been resolved for practical applications, though statistical methodology has advanced greatly. This paper focuses on some methodological issues. In one type of adaptation such as sample size re-estimation, only the postulated value of a parameter for planning the trial size may be altered. In another type, the originally intended hypothesis for testing may be modified using the internal data accumulated at an interim time of the trial, such as changing the primary endpoint and dropping a treatment arm. For sample size re-estimation, we make a contrast between an adaptive test weighting the two-stage test statistics with the statistical information given by the original design and the original sample mean test with a properly corrected critical value. We point out the difficulty in planning a confirmatory trial based on the crude information generated by exploratory trials. In regards to selecting a primary endpoint, we argue that the selection process that allows switching from one endpoint to the other with the internal data of the trial is not very likely to gain a power advantage over the simple process of selecting one from the two endpoints by testing them with an equal split of alpha (Bonferroni adjustment). For dropping a treatment arm, distributing the remaining sample size of the discontinued arm to other treatment arms can substantially improve the statistical power of identifying a superior treatment arm in the design. A common difficult methodological issue is that of how to select an adaptation rule in the trial planning stage. Pre-specification of the adaptation rule is important for the practicality consideration. Changing the originally intended hypothesis for testing with the internal data generates great concerns to clinical trial researchers.  相似文献   

16.
We develop methodology for a multistage-decision problem with flexible number of stages in which the rewards are survival times that are subject to censoring. We present a novel Q-learning algorithm that is adjusted for censored data and allows a flexible number of stages. We provide finite sample bounds on the generalization error of the policy learned by the algorithm, and show that when the optimal Q-function belongs to the approximation space, the expected survival time for policies obtained by the algorithm converges to that of the optimal policy. We simulate a multistage clinical trial with flexible number of stages and apply the proposed censored-Q-learning algorithm to find individualized treatment regimens. The methodology presented in this paper has implications in the design of personalized medicine trials in cancer and in other life-threatening diseases.  相似文献   

17.
A bridging study defined by ICH E5 is usually conducted in the new region after the test product has been approved for commercial marketing in the original region due to its proven efficacy and safety. However, extensive duplication of clinical evaluation in the new region not only requires valuable development resources but also delay availability of the test product to the needed patients in the new regions. To shorten the drug lag or the time lag for approval, simultaneous drug development, submission, and approval in the world may be desirable. Recently, multi-regional trials have attracted much attention from sponsors as well as regulatory authorities. Current methods for sample determination are based on the assumption that true treatment effect is uniform across regions. However, unrecognized heterogeneity among patients as ethnic or genetic factor will effect patients’ survival. Using the simple log-rank test for analysis of treatment effect on survival in studies under heterogeneity may be severely underpowered. In this article, we address the issue that the treatment effects are different among regions to design a multi-regional trial. The optimal log-rank test is employed to deal with the heterogeneous effect size among regions. The test statistic for the overall treatment effect is used to determine the total sample size for a multi-regional trial and the consistent trend and the proposed criteria are used to rationalize partition sample size to each region.  相似文献   

18.
Molecularly targeted, genomic‐driven, and immunotherapy‐based clinical trials continue to be advanced for the treatment of relapse or refractory cancer patients, where the growth modulation index (GMI) is often considered a primary endpoint of treatment efficacy. However, there little literature is available that considers the trial design with GMI as the primary endpoint. In this article, we derived a sample size formula for the score test under a log‐linear model of the GMI. Study designs using the derived sample size formula are illustrated under a bivariate exponential model, the Weibull frailty model, and the generalized treatment effect size. The proposed designs provide sound statistical methods for a single‐arm phase II trial with GMI as the primary endpoint.  相似文献   

19.
We study the design of multi-armed parallel group clinical trials to estimate personalized treatment rules that identify the best treatment for a given patient with given covariates. Assuming that the outcomes in each treatment arm are given by a homoscedastic linear model, with possibly different variances between treatment arms, and that the trial subjects form a random sample from an unselected overall population, we optimize the (possibly randomized) treatment allocation allowing the allocation rates to depend on the covariates. We find that, for the case of two treatments, the approximately optimal allocation rule does not depend on the value of the covariates but only on the variances of the responses. In contrast, for the case of three treatments or more, the optimal treatment allocation does depend on the values of the covariates as well as the true regression coefficients. The methods are illustrated with a recently published dietary clinical trial.  相似文献   

20.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号