首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We consider a general class of prior distributions for nonparametric Bayesian estimation which uses finite random series with a random number of terms. A prior is constructed through distributions on the number of basis functions and the associated coefficients. We derive a general result on adaptive posterior contraction rates for all smoothness levels of the target function in the true model by constructing an appropriate ‘sieve’ and applying the general theory of posterior contraction rates. We apply this general result on several statistical problems such as density estimation, various nonparametric regressions, classification, spectral density estimation and functional regression. The prior can be viewed as an alternative to the commonly used Gaussian process prior, but properties of the posterior distribution can be analysed by relatively simpler techniques. An interesting approximation property of B‐spline basis expansion established in this paper allows a canonical choice of prior on coefficients in a random series and allows a simple computational approach without using Markov chain Monte Carlo methods. A simulation study is conducted to show that the accuracy of the Bayesian estimators based on the random series prior and the Gaussian process prior are comparable. We apply the method on Tecator data using functional regression models.  相似文献   

2.
We derive rates of contraction of posterior distributions on non‐parametric models resulting from sieve priors. The aim of the study was to provide general conditions to get posterior rates when the parameter space has a general structure, and rate adaptation when the parameter is, for example, a Sobolev class. The conditions employed, although standard in the literature, are combined in a different way. The results are applied to density, regression, nonlinear autoregression and Gaussian white noise models. In the latter we have also considered a loss function which is different from the usual l 2 norm, namely the pointwise loss. In this case it is possible to prove that the adaptive Bayesian approach for the l 2 loss is strongly suboptimal and we provide a lower bound on the rate.  相似文献   

3.
In this paper, we propose a mixture of beta–Dirichlet processes as a nonparametric prior for the cumulative intensity functions of a Markov process. This family of priors is a natural extension of a mixture of Dirichlet processes or a mixture of beta processes which are devised to compromise advantages of parametric and nonparametric approaches. They give most of their prior mass to the small neighborhood of a specific parametric model. We show that a mixture of beta–Dirichlet processes prior is conjugate with Markov processes. Formulas for computing the posterior distribution are derived. Finally, results of analyzing credit history data are given.  相似文献   

4.
Multivariate density estimation plays an important role in investigating the mechanism of high-dimensional data. This article describes a nonparametric Bayesian approach to the estimation of multivariate densities. A general procedure is proposed for constructing Feller priors for multivariate densities and their theoretical properties as nonparametric priors are established. A blocked Gibbs sampling algorithm is devised to sample from the posterior of the multivariate density. A simulation study is conducted to evaluate the performance of the procedure.  相似文献   

5.
We develop a novel computational methodology for Bayesian optimal sequential design for nonparametric regression. This computational methodology, that we call inhomogeneous evolutionary Markov chain Monte Carlo, combines ideas of simulated annealing, genetic or evolutionary algorithms, and Markov chain Monte Carlo. Our framework allows optimality criteria with general utility functions and general classes of priors for the underlying regression function. We illustrate the usefulness of our novel methodology with applications to experimental design for nonparametric function estimation using Gaussian process priors and free-knot cubic splines priors.  相似文献   

6.
We establish weak and strong posterior consistency of Gaussian process priors studied by Lenk [1988. The logistic normal distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83 (402), 509–516] for density estimation. Weak consistency is related to the support of a Gaussian process in the sup-norm topology which is explicitly identified for many covariance kernels. In fact we show that this support is the space of all continuous functions when the usual covariance kernels are chosen and an appropriate prior is used on the smoothing parameters of the covariance kernel. We then show that a large class of Gaussian process priors achieve weak as well as strong posterior consistency (under some regularity conditions) at true densities that are either continuous or piecewise continuous.  相似文献   

7.
Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation involving a nonparametric correction of a parametric likelihood has been proposed in the literature with a proof of posterior consistency for spectral density estimation in combination with the Bernstein–Dirichlet process prior for Gaussian time series. In this article, we will extend the posterior consistency result to non-Gaussian time series by employing a general consistency theorem for dependent data and misspecified models. As a special case, posterior consistency for the spectral density under the Whittle likelihood is also extended to non-Gaussian time series. Small sample properties of this approach are illustrated with several examples of non-Gaussian time series.  相似文献   

8.
We derive a new Bayesian credible interval estimator for comparing two Poisson rates when counts are underreported and an additional validation data set is available. We provide a closed-form posterior density for the difference between the two rates that yields insightful information on which prior parameters influence the posterior the most. We also apply the new interval estimator to a real-data example, investigate the performance of the credible interval, and examine the impact of informative priors on the rate difference posterior via Monte Carlo simulations.  相似文献   

9.
We propose a general procedure for constructing nonparametric priors for Bayesian inference. Under very general assumptions, the proposed prior selects absolutely continuous distribution functions, hence it can be useful with continuous data. We use the notion ofFeller-type approximation, with a random scheme based on the natural exponential family, in order to construct a large class of distribution functions. We show how one can assign a probability to such a class and discuss the main properties of the proposed prior, namedFeller prior. Feller priors are related to mixture models with unknown number of components or, more generally, to mixtures with unknown weight distribution. Two illustrations relative to the estimation of a density and of a mixing distribution are carried out with respect to well known data-set in order to evaluate the performance of our procedure. Computations are performed using a modified version of an MCMC algorithm which is briefly described.  相似文献   

10.
Normalized random measures with independent increments are a general, tractable class of nonparametric prior. This paper describes sequential Monte Carlo methods for both conjugate and non-conjugate nonparametric mixture models with these priors. A simulation study is used to compare the efficiency of the different algorithms for density estimation and comparisons made with Markov chain Monte Carlo methods. The SMC methods are further illustrated by applications to dynamically fitting a nonparametric stochastic volatility model and to estimation of the marginal likelihood in a goodness-of-fit testing example.  相似文献   

11.
Consistency of Bernstein polynomial posteriors   总被引:1,自引:0,他引:1  
A Bernstein prior is a probability measure on the space of all the distribution functions on [0, 1]. Under very general assumptions, it selects absolutely continuous distribution functions, whose densities are mixtures of known beta densities. The Bernstein prior is of interest in Bayesian nonparametric inference with continuous data. We study the consistency of the posterior from a Bernstein prior. We first show that, under mild assumptions, the posterior is weakly consistent for any distribution function P 0 on [0, 1] with continuous and bounded Lebesgue density. With slightly stronger assumptions on the prior, the posterior is also Hellinger consistent. This implies that the predictive density from a Bernstein prior, which is a Bayesian density estimate, converges in the Hellinger sense to the true density (assuming that it is continuous and bounded). We also study a sieve maximum likelihood version of the density estimator and show that it is also Hellinger consistent under weak assumptions. When the order of the Bernstein polynomial, i.e. the number of components in the beta distribution mixture, is truncated, we show that under mild restrictions the posterior concentrates on the set of pseudotrue densities. Finally, we study the behaviour of the predictive density numerically and we also study a hybrid Bayes–maximum likelihood density estimator.  相似文献   

12.
This paper proposes the use of the Bernstein–Dirichlet process prior for a new nonparametric approach to estimating the link function in the single-index model (SIM). The Bernstein–Dirichlet process prior has so far mainly been used for nonparametric density estimation. Here we modify this approach to allow for an approximation of the unknown link function. Instead of the usual Gaussian distribution, the error term is assumed to be asymmetric Laplace distributed which increases the flexibility and robustness of the SIM. To automatically identify truly active predictors, spike-and-slab priors are used for Bayesian variable selection. Posterior computations are performed via a Metropolis-Hastings-within-Gibbs sampler using a truncation-based algorithm for stick-breaking priors. We compare the efficiency of the proposed approach with well-established techniques in an extensive simulation study and illustrate its practical performance by an application to nonparametric modelling of the power consumption in a sewage treatment plant.  相似文献   

13.
We investigate certain objective priors for the parameters in a normal linear regression models with one of the explanatory variables subject to measurement error. We first show that the use of the standard non informative prior for normal linear regression without measurement error leads to an improper posterior in the measurement error model. We then derive the Jeffreys prior and reference priors, and show that they lead to proper posteriors. We use simulation study to compare the frequentist performance of the estimates derived using these priors, and the MLE.  相似文献   

14.
Most methods for assessing the sensitivity of the posterior to the prior do not work if the prior is improper. We characterize the neighborhoods of priors that permit non-trivial sensitivity analysis for improper priors. We show that these neighborhoods are not “tail rich”, i.e. they do not contain measures with a variety of tail behavior. Thus there are no neighborhoods that are simultaneously non-trivial and rich. We also show that using the formal structure of finitely additive priors does not solve the problem. We suggest some directions for addressing the problem. In particular, we consider replacing the improper prior with a sequence of asymptotically well-behaved data-dependent priors.  相似文献   

15.
We measure the local sensitivity of a posterior expectation with respect to the prior by computing the norm of the Fréchet derivative of the posterior with respect to the prior over several different classes of measures. We compute the derivative of the posterior upper expectation when the prior varies in a restricted ?-contamination class. A bound on the global sensitivity of a class of priors is obtained. As an application, we show that of all sets with posterior probability 1 — α, the likelihood region minimizes the norm of the Fréchet derivative over the ?-contamination class and so is, in some sense, the most robust region with this posterior probability. But there exist counterexamples to this result for other classes of priors.  相似文献   

16.
In this paper, we present an innovative method for constructing proper priors for the skewness (shape) parameter in the skew‐symmetric family of distributions. The proposed method is based on assigning a prior distribution on the perturbation effect of the shape parameter, which is quantified in terms of the total variation distance. We discuss strategies to translate prior beliefs about the asymmetry of the data into an informative prior distribution of this class. We show via a Monte Carlo simulation study that our non‐informative priors induce posterior distributions with good frequentist properties, similar to those of the Jeffreys prior. Our informative priors yield better results than their competitors from the literature. We also propose a scale‐invariant and location‐invariant prior structure for models with unknown location and scale parameters and provide sufficient conditions for the propriety of the corresponding posterior distribution. Illustrative examples are presented using simulated and real data.  相似文献   

17.
We study a Bayesian analysis of the proportional hazards model with time‐varying coefficients. We consider two priors for time‐varying coefficients – one based on B‐spline basis functions and the other based on Gamma processes – and we use a beta process prior for the baseline hazard functions. We show that the two priors provide optimal posterior convergence rates (up to the term) and that the Bayes factor is consistent for testing the assumption of the proportional hazards when the two priors are used for an alternative hypothesis. In addition, adaptive priors are considered for theoretical investigation, in which the smoothness of the true function is assumed to be unknown, and prior distributions are assigned based on B‐splines.  相似文献   

18.
In this article, we consider Bayesian inferences for the heteroscedastic nonparametric regression models, when both the mean function and variance function are unknown. We demonstrated consistency of posterior distributions for this model using priors induced by B-splines expansion, treating both random and deterministic covariates in a uniform manner.  相似文献   

19.
For normal populations with unequal variances, we develop matching priors and reference priors for a linear combination of the means. Here, we find three second-order matching priors: a highest posterior density (HPD) matching prior, a cumulative distribution function (CDF) matching prior, and a likelihood ratio (LR) matching prior. Furthermore, we show that the reference priors are all first-order matching priors, but that they do not satisfy the second-order matching criterion that establishes the symmetry and the unimodality of the posterior under the developed priors. The results of a simulation indicate that the second-order matching prior outperforms the reference priors in terms of matching the target coverage probabilities, in a frequentist sense. Finally, we compare the Bayesian credible intervals based on the developed priors with the confidence intervals derived from real data.  相似文献   

20.
When prior information on model parameters is weak or lacking, Bayesian statistical analyses are typically performed with so-called “default” priors. We consider the problem of constructing default priors for the parameters of survival models in the presence of censoring, using Jeffreys’ rule. We compare these Jeffreys priors to the “uncensored” Jeffreys priors, obtained without considering censored observations, for the parameters of the exponential and log-normal models. The comparison is based on the frequentist coverage of the posterior Bayes intervals obtained from these prior distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号